

Artificial Neural Networks

- ANN is composed of input and output layers, and one or more hidden layers containing many interconnected neurons.
- ANN is a machine learning process that uses interconnected neurons in a layered structure similar to the human brain.
- ANN is a universal computational model that mimics the human brain in its main function of adaptive learning.
- ANN is an artificial intelligence technology that teaches computers to learn from data and make generalizations.

https://www.javatpoint.com/artificial-neural-network

Multi-Layer Perceptrons (MLP)

- MLP is a type of **Artificial Neural Network** that can learn a **nonlinear function** that maps inputs to outputs based on a labeled training dataset.
- MLP is a **feed-forward network** that is trained using a **backpropagation** algorithm.
- MLP is a deep learning method that can be applied to a wide range of supervised learning problems, such as classification, regression, and pattern recognition
- MLP may learn to discriminate or approximate data based on the output labels, by adjusting the weights in the network during training to minimize the difference between predicted and actual output. After trained, MLP may be used to predict the output label for new input data.

🤣 NeuCom © Plus Visualisation Data Analysis Modelling Discovery Help File NeuCom **A Neuro-Computing Environment for Evolving Intelligence** Action Feature Part Selection Environmer (Critique) Inputs www.theneucom.com tion Mod Results New Inputs NNM Rule extraction View & Modify Extract Save Transpose Rename Split Ratio Split ۲ 20 Delete All Normalise Join Eigen Transform Delete

MLP Classification Model: IRIS Flower Dataset

- The Iris flower dataset is widely used in machine learning and pattern recognition. It includes measurements of the sepal length/width and petal length/width of 150 samples of iris flowers, 50 samples from each of three different species: Iris setosa, Iris versicolor, and Iris virginica.
- * Each sample in the dataset is labeled with the iris flower species, making this a supervised learning problem. The objective is to design an MLP model that can predict the species of an iris flower given its measurements.

MLP Classification Model: IRIS Flower Dataset

- Iris time series dataset consists of 150 iris plants.
- Four Features: sepal length/width, petal length/width.
- * Three Classes: Setosa, Versicolor, and Virginica.
- Iris dataset modelling for classification.
- * Modelling method: MLP.
- * Iris dataset **split** 20/80 training-learning ratio.

MLP Classification Model: Data Loading

MLP Classification Model: Input and Visualisation

						Available Datasets Iris.txt	✓ Sta		
_		1	2	3	4	5	Ŀ	Filename: Iris.txt #Samples:	150 #Variables:
	1	5.1	3.5	1.4	0.2	1			1 1
	2	4.9	3	1.4	0.2	1		⁸ Setosa Versicolor	Virginica
	3	4.7	3.2	1.3	0.2	1			
	4	4.6	3.1	1.5	0.2	1		7-	- WW. 14877)
	5	5	3.6	1.4	0.2	1		Mark A A	
	6	5.4	3.9	1.7	0.4	1		6	1 N. AN VI M . * A`
	7	4.6	3.4	1.4	0.3	1		I NA AN PROPERTY VEVE	WY ILTWA (V
	8	5	3.4	1.5	0.2	1		3 Stall MAAMANN. IV	י עזור אין יף
Jp	9	4.4	2.9	1.4	0.2	1		S VVV V V V MALLANN MAL	JT '
1	10	4.9	3.1	1.5	0.1	1	. 1		1]
Down	11	5.4	3.7	1.5	0.2	1			
	12	4.8	3.4	1.6	0.2	1			h. A. M. A.
	13	4.8	3	1.4	0.1	1			₩ [₩] ₩₩ { ₩ [₩] ₩
	14	4.3	3	1.1	0.1	1		1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	As Arm.
	15	5.8	4	1.2	0.2	1			אַטעעיי ייעייך
	16	5.7	4.4	1.5	0.4	1			√ · ` `
	17	5.4	3.9	1.3	0.4	1			-
	18	5.1	3.5	1.4	0.3	1		- march	
	19	5.7	3.8	1.7	0.3	1			
	20	5.1	3.8	1.5	0.3	1	-	20 40 60 80	100 120

MLP Classification Model: Parameters, Modelling and Analysis

MLP Classification Model: Parameters, Modelling and Analysis

MLP Classification Model: Parameters, Modelling and Analysis

MLP Prediction Model: Gas Furnace Dataset

* The gas furnace dataset for time series analysis contains the gas rate and the percentage CO₂ in the gas.

- Gas furnace time series dataset consists of **292 observations.**
- **Two input features:** Methane and CO₂
- *** One output feature:** $CO_2(t+1) = f$ (Methane(t-4), $CO_2(t)$, ε)
- * dataset modelling for Prediction.
- * Modelling method: MLP.
- * Gas furnace dataset **split** 30/70 training-learning ratio.

MLP Prediction Model : Data Loading

MLP Prediction Model: Input and Visualization

🥠 Figure	No. 1: Neucon	n-Array Viewer	, G —		
		1	2	3	
	1	-0.109	53.5	53.4	
	2	0	53.4	53.1	-
	3	0.178	53.1	52.7	
	4	0.339	52.7	52.4	
	5	0.373	52.4	52.2	
	6	0.441	52.2	52	
	7	0.461	52	52	
	8	0.348	52	52.4	1
Up	9	0.127	52.4	53	
1	10	-0.18	53	54	
Down	11	-0.588	54	54.9	
	12	-1.055	54.9	56	
	13	-1.421	56	56.8	
	14	-1.52	56.8	56.8	
	15	-1.302	56.8	56.4	1
	16	-0.814	56.4	55.7	
	17	-0.475	55.7	55	
	18	-0.193	55	54.3	
	19	0.088	54.3	53.2	
	20	0.435	53.2	52.3	-
Delete	Save	Save As So	rt By Var Sh	uffle Clos	se

MLP Prediction Model: Parameters, Modelling and Analysis

MLP Prediction Model: Parameters, Modelling and Analysis

MLP Prediction Model: Parameters, Modelling and Analysis

Fri Mar 31, 2023

References:

- 1. N.Kasabov, *Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence*, Springer, 2019.
- 2. N.Kasabov, *Evolving connectionist systems: Methods and Applications in Bioinformatics, Brain study and intelligent machines*, Springer Verlag, London, New York, Heidelberg, 2002.
- 3. N.Kasabov, Foundations of neural networks, fuzzy systems and knowledge engineering, MIT Press, CA, MA, 1996.
- 4. Q. Song and N. Kasabov, *NFI- A neuro-fuzzy inference method for transductive reasoning*, IEEE Tr. Fuzzy Systems, in print, 2004.
- 5. R. Fisher, *The use of Multiple Measurements in Taxonomic Problems*, Annals Eugenics 7, 1936.

Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence

Assignment:

- 1. Download NeuCom.
- 2. Use the attached iris.csv to model MLP for classification.
 - 1. Use split ratio of 50/50 and check the accuracy.
 - 2. Change the number of training cycles to 50. check accuracy.
- 3. Use the attached gasfurnace.csv to model MLP for prediction.
 - 1. Use split ratio of 50/50 and check the accuracy.
 - 2. Change the number of hidden nodes to 10. check accuracy.
- 4. Email results to nkasabov@aut.ac.nz & iabouhassan@tu-sofia.bg

