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Full course DLU, 2023, Lecture Content 

Advanced Artificial Intelligence Technologies and Applications

1.    AI and the evolution of its principles. Evolving processes in Time and Space (Ch1, 3-19)

2. From Data and Information to Knowledge. Fuzzy logic. (Ch1,19-33 + extra reading) 

3. Artificial neural networks - fundamentals. (Ch2, 39-48). Computational modelling with NN. Tut1: NeuCom. 

4. Deep neural networks (Ch.2, 48-50 + extra reading).

5. Evolving connectionist systems (ECOS) (Ch2, 52-78). Tutorial 2:  ECOS in NeuCom.

6. Deep learning and deep knowledge representation in the human brain (Ch3)

7. Spiking neural networks (Ch4). Evolving spiking neural networks (Ch5)

8. Brain-inspired SNN. NeuCube. (Ch.6). Tutorial 3: NeuCube software (IA)

9. From von Neuman  Machines to Neuromorphic Platforms (Ch20 , 22)

10. Other neurocomputers: Transformers. 

11. Evolutionary and quantum inspired computation (Ch.7)

12. AI applications for brain data: EEG, fMRI  (Ch.8-11) 

13. Brain-computer interfaces (BCI) (Ch.14)

14. AI applications for audio-visual information (Ch.12,13). AI for language modelling.

15. AI in bioinformatics  and neuroinformatics (Ch15,16, 17,18) 

16. AI applications for multisensory environmental data (Ch19). 

17. AI in finance  and economics (Ch19)

nkasabov@aut.ac.nz https://www.knowledgeengineering.ai/china

Course book: N.Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence Springer, 2019, 

https://www.springer.com/gp/book/9783662577134

Additional materials: https://www.knowledgeengineering.ai/china

ZOOM link for all lectures: https://us05web.zoom.us/j/4658730662?pwd=eFN0eHRCN3o4K0FaZ0lqQmN1UUgydz09

mailto:nkasabov@aut.ac.nz
https://www.knowledgeengineering.ai/china
https://www.springer.com/gp/book/9783662577134
https://www.knowledgeengineering.ai/china


DNA,  Genes and Proteins (Ch.2)

– Each cell of an individual 

contains the whole DNA (the 

genome) of the individual. 

– About 36,000 genes in the 

human genome, each of them 

comprising of  50 to a mln 

base pairs – A,T,C or G –

basic molecules) 

– The Main Dogma: DNA-

>RNA->proteins
• Transcription: DNA (about 5%) -> mRNA  

– DNA -> pre-RNA -> splicing -> mRNA

(only the exons)
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Chapter 15. Computational modelling and pattern 

recognition in Bioinformatics
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DNA

Protein

Transcription

Translation

mRNA is the only type of RNA that is translated into 

protein

1)tRNA (9%)

2)rRNA (85%)

3)snRNA (1%)

4)mRNA (5%)

RNA
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Chemistry of DNA and RNA
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Proteins and protein structures

• The mRNA is translated into proteins

• A protein is a sequence of amino-acids, each of 

them defined by a group of 3 nucleotides (codons) 

• 20 amino acids all together (A,C-H,I,K-N,P-

T,V,W,Y)

• Initiation and stop codons

• Proteins have complex structures: 

– Primary (linear),

– Secondary (3D, defining functionality)

– Tertiary ( energy minimisation packs), 

– Quaternary (interaction between molecules) 

• The Protein Data Bank – www.rcsb.org - 100,000 

hits a day on average 
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Gene expression data and their modelling

• Gene expression data analysis 

• Goal: identify a gene or a group of 
genes associated with the state of 
the cell (tissue), e.g. cancer.

• Large number of genes (appr. 
30,000) expressed in a microarray 
(in vitro) from a single tissue.

• It is difficult to find consistent 
patterns of gene expression for a 
class of tissue

• After all, a microarray data is just of 
few microseconds snapshot of what 
is happening in the cell

• Genes interact – how do we find out 
about that? 

• Growing number of examples and 
complexity.

8
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inputs
output

rule nodes
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Gene expression time series  data and gene regulatory networks 

(GRN) modelling
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Example of modelling gene expression time series in NeuCube
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Chapter 16. Computational  Neuro-Genetic Modelling  (CNGM) 

- Benuskova and Kasabov (2007) 

SNN that incorporate a gene regulatory network (GRN) as a dynamic parameter 

systems to capture dynamic interaction of genes (parameters) related to neuronal 

activities of the SNN.

 - Functions of neurons and neural networks are influenced by internal networks 

of interacting genes and proteins forming an abstract GRN model.

 - The GRN and the SNN function at different time scales.

nkasabov@aut.ac.nz www.kedri.info

mailto:nkasabov@aut.ac.nz


nkasabov@aut.ac.nz



























 −−
−−













 −−
−=−−

type
rise

ax
ijj

type

decay

ax
ijjtypeax

ijj
type

ij

tttt
AttPSP


expexp)(

type = fast excitation; slow_excitation; fast_inhibition; slow_inhibition

A neurogenetic model of a spiking neuron   

(Kasabov, Benuskova, Wysoski, 2005)

- Four types of synapses: fast excitation; slow_excitation; fast_inhibition; slow_inhibition

- A Gene Regulatory Network (GRN) as a dynamical parameter system of the neuron  

Table.  Neuronal Parameters and Related Proteins 

Neuronal parameter 

Amplitude and time constants of 
Protein 

Fast excitation PSP AMPAR 

Slow excitation PSP NMDAR 

Fast inhibition PSP GABRA 

Slow inhibition PSP GABRB 

Firing threshold SCN, KCN, CLC 

Late excitatory PSP  

through GABRA 

PV 
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An example of a derived GRN through CNGM: 

A case study on epilepsy (with A. Villa et al, 2006)) 

 

GABRA GABRB 
 

AMPAR 

NMDAR 

PV CLC 

SCN 

KCN 

• The strongest interactions between genes 

in the evolved abstract GRN (left picture)

• The GRN can be used to predict gene 

knock-out consequences 

• Predicted consequence of PV gene knock-

out upon expression of GABRB – stronger 

slow inhibition

• Predicted consequence of PV gene knock-

out upon local field potential – shift to lower 

frequencies of oscillations

• Potential for modeling of epilepsy and other 

genetic diseases manifested by the change 

of EEG/LFP

Table.  Neuronal Parameters and Related Proteins 

Neuronal parameter 

Amplitude and time constants of 
Protein 

Fast excitation PSP AMPAR 

Slow excitation PSP NMDAR 

Fast inhibition PSP GABRA 

Slow inhibition PSP GABRB 

Firing threshold SCN, KCN, CLC 

Late excitatory PSP  

through GABRA 

PV 

 



Neurogenetic STBD: The Allen Brain Institute Map

(http://www.brain-map.org) 
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From the Brain Explorer: The Expression level of the genes (on the y-axis): ABAT A_23_P152505, ABAT

A_24_P330684, ABAT CUST_52_PI416408490, ALDH5A1 A_24_P115007, ALDH5A1 A_24_P923353,

ALDH5A1 A_24_P3761, AR A_23_P113111, AR CUST_16755_PI416261804, AR

CUST_85_PI416408490, ARC A_23_P365738, ARC CUST_11672_PI416261804, ARC

CUST_86_PI416408490, ARHGEF10 A_23_P216282, ARHGEF10 A_24_P283535, ARHGEF10 CUST_)

at different slices of the brain (on the x-axis) (from www.brain-map.org) (http://www.alleninstitute.org)

http://www.alleninstitute.org/
http://www.brain-map.org/
http://www.alleninstitute.org/
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• A transductive model is created on a sub-set of neighbouring data 

to each input vector. A new data vector is situated at the centre of 

such a sub-set (here illustrated with two of them – x1 and x2), and is 

surrounded by a fixed number of nearest data samples selected from 

the training data D and generated from an existing model M 

(Vapnjak)

• The principle of “What is good for my neigbours is good for me”

• Problems: 

- Which variables, weighted or not weighted ? 

- How many neighbours?

- What distance measure?

- Which model? 

Parameter and feature optimisation:

- GA (Proc. IJCNN05, IEEE Press, Montreal, 2005)

- LMS (e.g. TWNFI) 

Chapter 17. Computational framework for personalised 

modelling. Applications in Bioinformatics 
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Personalised diagnosis and prognosis of cancer based on gene 

expression and clinical data   

• DNA analysis - large data 

bases; data always being added 

and modified; different sources 

of information

• Cancer Ontology-Based DSS 

• Markers and drug discoveries

• PEBL: www.peblnz.com

• Kasabov, N., Global, local 

and pesonalised modelling 

and profile discovery in 

Bioinformatics, Pattern 

Recognition Letters, Jan. 

2007 

http://www.peblnz.com/


Personalised modelling of gene expression data for cancer 

outcome prediction 
(experiments on M.Shipp’s data of DLBCL)
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Global, local and personalised  modelling – a comparative study on 

the GFR example 

Using different models reveals different knowledge   

Model
Neurons or 

rules
Test RMSE Test MAE

Average weights of input variables

Age         Sex         Scr        Surea       Race         Salb  

w1            w2         w3          w4            w5            w6

MDRD 

(global)
__ 7.74 5.88 1 1 1 1 1 1

MLP (global) 12 8.38 5.71 1 1 1 1 1 1

ANFIS 

(global)
36 7.40 5.43 1 1 1 1 1 1

DENFIS 

(local)
27 7.22 5.21 1 1 1 1 1 1

TNFI 

(persona
lised)

6.8 (average) 7.28 5.26 1 1 1 1 1 1

TWNFI 

(persona
lised)

6.8 (average) 7.08 5.12 0.87 0.70 1 0.93 0.40 0.52



Chapter 18. Personalised modelling for integrated static and dynamic data. 

Applications in neuroinformatics.  

Doborjeh, M., and Kasabov, N., IEEE WCCI/IJCNN, 2016 (Response to treatment of drug addicts using clinical and EEG  data)

M. Doborjeh, N. Kasabov, Z. Doborjeh, R. Enayatollahi, E. Tu, A. H. Gandomi, Personalised modelling with spiking neural networks 

integrating temporal and static information, Neural Networks, 119 (2019),162-177. 

Methods NeuCube-Personalised modelling NeuCube- Global modelling

Classification 

accuracy of class M 

versus class OP in 

%

Averaged over 47 trained PSNN

models: 93.61

One trained SNN model using 

all subjects and tested via 

leave-one-out method: 79.00

nkasabov@aut.ac.nz
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A spatio-temporal rule extracted from a trained SNNcube on climate data relate to a high risk of stroke for a group of 

individuals 

IF            SO2 changes around time T1)  AND  (Wind Speed changes around time T2)

AND      (TempMin changes around time T3)  AND  (Pressure changes around time T4) 

AND      (AvTemp changes around time T5)    AND  (Humidity changes around time T6)

AND      (NO2 changes around time  T7) AND (O3 changes around time T8) AND (Solar eruption around T9)

THEN (High risk of stroke for the individual X and the group she/he belongs to)

nkasabov@aut.ac.nz

Three snapshots of a NeuCube model during training on temporal climate and air pollution data of 9 variables,

measured on each of 20 days before a stroke event happened to patients from a selected group (the left 3

figures). The evolved connectivity in the 3D SNN model after training – spatio-temporal structural patterns of

connections are learned in the 3D dimensionality of the model. A dynamic functional pattern learned in the

functional space of climate variable changes (the right most figure).

Personalised stroke prediction 

Kasabov, N., Feigin, V., Hou, Z. -G., Chen, Y., Liang, L., Krishnamurthi, R., Parmar, P. (2014). Evolving spiking neural networks for 

personalised modelling, classification and prediction of spatio-temporal patterns with a case study on stroke. Neurocomputing, 134, 

269-279. doi:10.1016/j.neucom.2013.09.049

http://dx.doi.org/10.1016/j.neucom.2013.09.049


Personalised prediction of risk for stroke days ahead   

• SNN achieve better accuracy

• SNN predict stroke much earlier 

than other methods

• New information found about the 

predictive relationship of 

variables  

nkasabov@aut.ac.nz

(N.Kasabov, M. Othman, V.Feigin, R.Krishnamurti, Z Hou  et al - Neurocomputing 2014)



 

                                   Questions

1. What is the central dogma in biology?

2. How can NN be used for gene expression data classification?

3. How can NeuCube be used for modelling gene expression time series?

4. What is personalised modelling?

5. Give examples of personalised modelling in neuroinformatics.
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