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Abstract Spatio/Spector-Temporal Data (SSTD) analyzing is a challenging task,

as temporal features may manifest complex interactions that may also change over

time. Making use of suitable models that can capture the “hidden” interactions and

interrelationship among multivariate data, is vital in SSTD investigation. This

chapter describes a number of prominent applications built using the Kasabov’s

NeuCube-based Spiking Neural Network (SNN) architecture for mapping, learning,

visualization, classification/regression and better understanding and interpretation

of SSTD.
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1 Introduction

NeuCube [1, 2] is the first machine learning system to analyze integrated space and

time aspects of big data to deliver deeper insights. Inspired by the human brain, the

most evolved learning system there is, NeuCube does the same advanced pattern

recognition of complex data streams in just seconds. Much like the brain, NeuCube

uses a network of virtual neurons connecting to each other or disconnecting depending

on the timing of signals encoded in incoming data streams. Continuous streaming data

can be fed intoNeuCubewhich learns as it goes by constantly evolving this network of

neurons. Learning is represented as chains of connected neurons that ‘fire’ in sequence

by transmitting the incoming signal via their interconnections. Once patters in the data

are represented in NeuCube as chains of ‘firing’ neurons, these are learned and rec-

ognized. Then new incoming data is constantly compared to the learned patterns and

in this way NeuCube can predict future events as they unfold.

NeuCube consists of a set of independent mandatory and optional modules [2],

some of them are:

• Module M1: Generic prototyping and testing;

• Module M2 and M3: PyNN simulator for implementation on neuromorphic

hardware;

• Module M4: 3D visualization and mining;

• M5 module (I/O and information exchange) for interaction between modules.

The full configuration of the NeuCube is explained in chapter: “From von

Neumann architecture and Atanasoffs ABC to Neuromorphic Computation and

Kasabov’s NeuCube: Principles and Implementations” in Springer book and it is

graphically illustrated in Fig. 1.

This system is the first of its kind that can:

1. Learn and predict patterns from analyzing space and time aspects of data.

2. Use principles of the human nervous system to increase computational effi-

ciency and reduce resource usage.

3. Facilitates understanding and rule extraction through virtual reality visualization

of the model.

NeuCube has been successfully used in a number of application areas including:

• Application of NeuCube in brain data modelling;

• NeuCube and brain computer interfaces (BCI) with neurofeedback for

neurorehabilitation;

• NeuCube personalized modelling in neuroinformatics and bioinformatics;

• Risk of stroke prediction;

• Predicting and understanding response to treatment in biomedical environments;

• Seismic data modelling for earthquake prediction;

• NeuCube spatiotemporal pattern recognition from satellite images in remote

sensing

The above applications are briefly described in the following sections.
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2 Application of NeuCube in Brain Data Modelling

NeuCube has been successfully applied to various case studies of Spatio-Temporal

Brain data (STBD), the most prominent of which includes Electroencephalography

(EEG) and Functional Magnitude Resonance Imaging (fMRI) data. Due to the

complex spatiotemporal nature of STBD, it is often abstruse to explore the pre-

dictive potential factors using standard machine learning techniques, which are

often used to examine EEG and fMRI data These techniques lack the ability to:

classify neurological dynamics that occur over the time, identify the involved brain

areas through meaningful brain-like visualization, and also quantify the information

involved. However, NeuCube based SNN architecture is shown to be capable of

such tasks and leads to better understanding of the human behavior through brain

data modelling, exemplified as follows:

Progression of Alzheimer’s Disease (AD) [3]: Motivated by the dramatic rise of

neurological disorders, we proposed an SNN architecture to model EEG data col-

lected from people affected by Alzheimer’s disease (AD) and people diagnosed with

mild cognitive impairment (MCI). The model developed allows for studying the AD

progression and predicting whether the MCI patients are likely to be developed to

AD over time. Figure 2 shows the spatiotemporal connections created in the SNN

models, one is trained with the initial measurement of EEG data (time t0) and the

other model corresponds to the EEG data recorded after three months (time t1) from

the same person. Referring to [3], the model enabled us to precisely visualize the

Fig. 1 The NeuCube software development architecture for SNN applications on spatio and

spectrotemporal data
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alternation of EEG band-frequencies (Alpha, Beta, theta and Delta) influenced by

physiological brain ageing in AD patients.

Recognition of Attentional Bias using EEG Data [4]: Inspired by importance of

the attentional bias principle in human choice behavior, we formed a NeuCube

based SNN model for efficient recognition of attentional bias as influential factor in

consumers’ preferences. The model was tested on a case study of EEG data col-

lected from a group of moderate drinkers when they were presented by different

drink product features. Our case study findings suggest that a product brand name

may not significantly impress consumers by itself. However, when the name of a

brand comes along with an additional context, such as design, color, alcoholic or

non-alcoholic features, etc. it may direct the consumers attention to certain features

and lead the consumers to choose a product. In this particular case study, we found

that attentional bias towards alcoholic-related features had more outstanding effects

on the brain activity than the non-alcoholic features, as shown in the SNN con-

nectivity in Fig. 3.

Analysis of Perception and Production of Facial Expressions [5]: This is a

feasibility study of using the NeuCube SNN architecture for modelling EEG data

related to a facial expression-related task. Making use of the NeuCube model

allowed for the first time to discover the association between perceiving a particular

facial expression and mimicking the same expression. Our finding confirms the

biological principle of the Mirror Neurons System (MNS) [6] in human brain. As

illustrated in Fig. 4, we identified the role of mirror neurons can be dominant in

sadness emotion when compared with other emotions. Very similar areas of the

brain will be activated when someone perceiving sadness emotion versus mim-

icking the same. Figure 4d shows the biggest differences between SNN models of

perceiving and mimicking the sadness emotion.

Fig. 2 The progression of Alzheimer disorder is captured in decrement of SNN model

connectivity from t0 to t1. Figure from [3]
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Predicting the Outcome of Methadone Treatment in Addict Patients [7]: We

applied the NeuCube based SNN architecture to a case study of EEG data collected

during a cognitive task performed by three groups of subjects: (a) untreated opiate

addicts; (b) those undergoing methadone maintenance treatment (MMT) for opiate

dependence; and (c) a healthy control group. The experimental results proved the

following phenomena: (1) the NeuCube-based models obtained superior classifi-

cation accuracy when compared with traditional machine learning methods. (2) The

brain activity patterns of healthy volunteers were significantly different from people

with history of opiate dependence. The differences appeared less pronounced in

people undertaking MMT compared to those current opiate users. (3) The brain

functional pathways of the healthy volunteers were greater and broader than either

Fig. 4 a Exposing emotional facial expressions on a screen (sadness in this example);

b connectivity of a SNN model trained on EEG data related to perceiving the facial expression

images by a group of subjects; c connectivity of a SNN model trained on EEG data related to

mimicking the facial expressions by a group of subjects; d subtraction of the SNN models from

a and b to visualize, study and understand the differences between perceiving and mimicking an

emotion. Figure form [5]

Fig. 3 NeuCube based SNN models trained on EEG data of alcoholic-related features in

(a) versus non-alcoholic-related features in (b). Figure form [4]
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people undertaking MMT or those opiate users. (4) The STBD patterns of people on

low dose of methadone appeared more comparable to healthy volunteers compared

to those on high dose of methadone (as shown in Fig. 5).

Fig. 5 The SNN models are trained on EEG data from people on low (left) and high (right) dose

of methadone. Figure from [7]

Fig. 6 The initial (A) and final (B) connectivity of a SNN model after training with two different

data sets, related correspondingly to: affirmative sentence versus negative sentence. The final

connectivity is also shown as a 2D projection (C). Positive connections are shown in blue while the

negative connections are in red. Figure form [8]
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Modelling and Classification of Cognitive FMRI Data [8]: We utilized the

NeuCube SNN architecture for modelling the benchmark STAR/PLUS fMRI

dataset [9] collected from subjects when reading affirmative versus negative

sentences.

The trained connections in the SNN model (shown in Fig. 6) represent dynamic

spatiotemporal interactions derived by the fMRI voxels variables over time. In this

study, tracing the 3-D SNN model connectivity enabled us for the first time to

capture prominent brain functional pathways evoked in language comprehension.

Fig. 7 Brain activation detection and brain regions mapping in the SNN model trained by fMRI

data; (Aa) the 2-D SNN model activation maps for each class: watching a picture (Class Pic) or

reading a sentence (Class Sen); (Ab) Probability map estimated by t-test for Class Pic (left) and

Class Sen (right); (Ba) Locations of activation neurons in the averaged SNN model;

(Bb) Histogram of activated neurons with respect to different regions of interest (ROIs) for

each class. Figure from [10]
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We found stronger spatiotemporal connections between Left Dorsolateral Prefrontal

Cortex (LDLPFC) and Left Temporal (LT) while reading negated sentences than

affirmative sentences. The NeuCube SNN model resulted also in a superior clas-

sification accuracy of 90% when compared with traditional AI and statistical

methods.

In another research [10], we proposed a novel method based on the

NeuCube SNN architecture for which the following new algorithms were intro-

duced: fMRI data encoding into spike sequences; deep unsupervised learning of

fMRI data in a 3-D SNN reservoir; classification of cognitive states; connectivity

visualization and analysis for the purpose of understanding cognitive dynamics.

The method was applied to the STAR/PLUS fMRI dataset of seeing a picture versus

reading a sentence. The results are partially presented in Fig. 7 and fully explained

in [10]. The evolution of neurons’ activation degrees and the deep learning archi-

tecture formed in the SNN model is visualized at https://kedri.aut.ac.nz/neucube/

fmri.

3 NeuCube and Brain Computer Interfaces

(BCI) with Neurofeedback for Neurorehabilitation

In every 6 s, someone in the world becomes physically disabled due to a stroke. To

improve the quality of life of these stroke survivors, Neurorehabilitation aims at

rebuilding the affected brain motor functions through regular exercises. This intends

to strengthen the remaining neural connections by utilizing the brain’s ability to

build new neural pathways.

Decoding movements of the same limb is an important problem in BCI for

neurorehabilitation. Due to the non‐invasiveness and high temporal resolution, EEG

has been widely used for decoding movements in BCI. However, less spatial res-

olution caused by the limited number of electrodes is a challenge for pattern

recognition. Previous studies on neural activities in motor-related areas of the brain

during physical movements provide evidences that approximately the same areas of

brain are activated during the movements of the same limb. Thus, classification of

movements of same limb from EEG results in less accuracy and limits applicability

of BCI for Neurorehabilitation. The state-based online classification module of the

NeuCube addresses this limitation and facilitates a BCI platform for Neuroreha-

bilitation. Using this approach we aim to detect the patient’s intention to move his

or her hand and pass the command to the rehabilitation robot. Figure 8 depicts a

basic overview of this approach which facilitates a brain state-based classification

of EEG signals using SNN.

The module encloses a Finite State Machine which acts as a finite memory to the

model and a biologically plausible NeuCube SNN architecture to decode the state

transitions over the time. The module follows the cue based (synchronous) BCI

paradigm. While the subject is performing the task, EEG signals are recorded and
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classified. This classification output is used to control the rehabilitation robots

through human thoughts or intentions and also provides neurofeedback to help

them to improve their brain functions.

In line with development of the NeuCube based Neurorehabilitation, two cog-

nitive games (Grasp and NeuroRehab [11]) and one portable BCI have been

developed. The concept of cognitive game does not only give a “fun” factor to the

patients, but also trains them with the functionality of the product. These applica-

tions were developed for patients who have no voluntary muscular movements. The

patients are trained with an imaginary task, which involves them to imagine moving

a part of their body or a series of relatively complex muscle movements. A patient

is equipped with EEG cap on the scalp followed by the instruction on what to

imagine, so that the instructor can record the neural activity of the brain. Based on

the recorded data, a NeuCube model is trained, which can be used to control

objects. Once the training process is completed, the instructor performs an online

classification with a new EEG data. The classified output is converted into a control

signal, which controls the movements in the game.

Figure 9a is the Grasp game virtual environment, where a user is trained on how

to hold a glass through EEG data using the NeuCube.

Figure 9b shows the NeuroRehab game virtual environment [11] as a two class

problem, the aim of which is to move a ball either left or right depending on the

Fig. 8 Basic functional flow of BCI based neurorehabilitation through NeuCube SNN

architecture
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thought patterns of the patient. The patient can get the overview of how the

NeuCube SNN connections are being formed while he/she is trying to move an

object. Our preliminary studies [12] showed that in compared to standard machine

learning algorithms, NeuCube enabled us to obtain higher pattern recognition

accuracy, a better adaptability to new incoming data and a better interpretation of

the models.

For the purpose of making our software and hardware inter-compatible, but

keeping in mind of the cost and better power consumption, we use Portable BCI’s.

Portable BCI devices can be used for different application areas such as Neu-

rorehabilitation, cognitive gaming or to control a prosthetic limb. Currently we are

developing a portable BCI using the NeuCube SNN architecture to dynamically

extract knowledge from brain data in real time. NeuCube being a multiplatform

software, it can be easily integrated with the Raspberry Pi, which is cost effective

and is widely used for prototyping software to hardware interactions.

4 NeuCube Personalized Modelling in Neuroinformatics

and Bio-informatics

NeuCube advanced data analytics offers improved personal outcome prediction,

personalization of treatment and understanding through identifying the most pre-

dictive factors for a person.

In Neuroinformatics, the NeuCube personalized spiking neural network (PSNN)

model presents for the first time the integration of static data and dynamic STBD

using SNN architecture and the approach from [13] and [14]. We hypothesize that

personalized modelling with SNN could be successfully used, if the models learn

from the most informative STBD samples, which are selected based on clustering of

integrated static-dynamic data. In this approach, instead of building a global model

and training it with STBD of the whole subject population, for every person, we

Fig. 9 a Grasp game virtual environment, where a user is trained on how to hold a glass using

NeuCube with EEG data; b NeuroRehab game virtual environment, where a subject is trained to

move a ball left or right. If a wrong direction is chosen, a negative mark is given. These exercises

are used to help the patients to improve their cognitive abilities
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will build a PSNN model to train it only on STBD of those subjects who have

similar integrated factors:

• For an individual, a neighborhood of samples is collected based on similarity in

integrated static-dynamic data variables.

• A model is built using NeuCube on streaming data from the neighboring

samples to predict an outcome for the individual.

NeuCube based PSNN user interface is graphically shown in Fig. 10. In [15], the

proposed personalized modelling approach was applied to a case study of “response

to treatment” using EEG data for predicting the outcome of Methadone treatment in

addicts. The PSNN models trained on a subset of informative EEG data resulted in

a higher classification accuracy when compared with global SNN models. In

addition, they can be used to reveal individual characteristics on brain activities that

can be used to find the best patient- oriented treatment.

In bioinformatics, personalized modelling within NeuCube was successfully

applied to the determination of functional dysrhythmias of the stomach, whilst

preserving the spatial/temporal relationships present. The contraction of muscles

that facilitate the movement required in the stomach are generated by pacemaker

cells and propagated via electrical slow waves. The disruption to the normal

rhythms of these waves results in various digestive disorders which include gas-

troparesis, unexplained nausea and vomiting, and functional dyspepsia [16], which

do not have biological or bacterial causes.

Gastric slow waves are recorded using Electrogastrography (EGG) on the skin

surface. This study sampled the slow waves at 100 Hz with the patient at rest,

utilizing a sensor mesh of 851 nodes covering the entire stomach. In stage 1 only 4

different types of dysfunction were tested, and then expanded to 6 types in stage 2

with the inclusion of irregular irregularities. Two aspects of personalized modelling

set it apart as the application of choice are the ability to model successfully with low

Fig. 10 A block diagram of the NeuCube based personalised modelling approach. Vector-based

static data is available, each vector represents personal static clinical features. For every new input

person xi, K-nearest samples are selected based on similarity in integrated static and dynamic

STBD to sample xi. Then the STBD of neighbouring subjects are used to train the personalised

SNN model
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sample numbers, and the prediction of single samples. Couple this with the ability

to specify node locations within a functional network in NeuCube, a greater degree

of inherent complexity and interaction is retained by the model. In this study only 7

samples were available for each dysfunction. In stage 1 a determination accuracy of

100% was achieved for each dysfunction, but only after the introduction of a

specific flexible structure within the NeuCube network. The 851 input nodes were

located according to their physical locations, and a “computational” cube added to

help differentiate each dysfunction. In Stage 2 various structural dimensions of the

network, number of training cycles, and parameter optimization is included. On first

inspection the results were surprising in that a smaller computational cube

(Fig. 11a) was better along with a single training cycle. The pattern of input node

activation was recorded and can be used to assist in the understanding if wave

propagation throughout the system. The overall pattern of node activation was seen

to be different for each dysfunction. Figure 11b shows one such pattern, for cov-

erage of the results of stage 1 as explained in [17].

Spike encoding using the moving window method was used throughout with a

threshold set to capture small changes in input signal. This allowed the distinction

amongst dysfunctions especially as some dysrhythmias can occur at the same

frequency as normal activity [18]. All but one dysfunction in stage 2 were predicted

accurately. Reentry dysfunctions, both anterior and posterior, are known to be the

most dynamic and therefore difficult to determine in conjunction with their often

very close resemblance to Ectopic Pacemaker signals. This was evident in our

results, along with the successful prediction of non-dysfunctional time segments.

To the best of our knowledge this study is the first to apply this type of mod-

elling to EGG slow wave signals. It also demonstrates the diversity of the NeuCube

architecture, and that irregular irregularities in signals are detectible where previ-

ously they have been notoriously difficult.

Fig. 11 a NeuCube node layout. Yellow nodes are input, blue are computational nodes;

b example of average input node activation
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5 Risk of Stroke Prediction

Stroke is a silent killer and a major cause of disability. About 80% of strokes can be

prevented through control of modifiable risk [19, 20]. Many studies [21–23] discov-

ered associations between environmental variables toward increment of stroke risk.

Moving toward personalized preventive measures, we applied an individualized

approach during two seasons (winter and spring) based on individual’s risk factors

(hypertension, smoking, alcohol, diabetes, obesity and high cholesterol) through

various environmental variables (weather characteristics, solar activity, air pollu-

tion) measured daily over 60 days before the stroke onset. Daily environmental data

were collected through the following 12 variables: wind speed; wind chill; dry bulb

temperature; wet bulb temperature; temperature max; temperature min; humidity;

atmospheric pressure; sulphur dioxide (SO2); nitrogen dioxide (NO2); ozone (O3);

and solar radiation. Using the NeuCube-based model, we created personalized

models of 46 randomly selected individuals to validate whether the combinations of

inclement environment condition increase the risk of stroke occurrence in an

individual with modifiable risk factors. This model also assisted to understand the

relationship and interactivity exist in the combined environmental factors on indi-

vidual level of risk. Finally we determined the earliest time point to best predict the

risk of stroke incident for individual as preventive measures. Based on biological

plausibility of association between stroke and weather/environmental characteris-

tics, the time window between days 60 and 40 before the stroke event was used as

‘low risk’ days and the days in the interval between 2nd and 20th day before the

event—as ‘high risk’ days.

Figure 12 shows the low risk and high risk deep patterns in two learned SNN

models for one subject in the winter season (subject id: 9). These patterns assist us

in interpreting the specific risk triggering environmental factors for individual. For

Fig. 12 Individual analysis of subject 9 for winter case study in low risk class in (a) and high risk

class in (b)
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example high risk can be predicted for this subject if atmospheric pressure changes

first followed by wind speed, temperature wet, temperature max, temperature dry,

sulfur dioxide, humidity, nitrogen dioxide, wind chill, ozone gas and temperature

min sequentially.

Using the NeuCube based models for classification problem (class 1: low risk

and class 2: high risk), we obtained excellent total accuracy of 95% in winter and

85% in spring for one day ahead stroke risk prediction.

6 Predicting and Understanding Response to Treatment

in Biomedical Environment: A Case Study of Clozapine

Monotherapy

This study was conducted as part of a large cross-sectional study investigating

clozapine (CLZ) response in people with treatment-resistant schizophrenia

(TRS) using EEG, MRI and genetic information. CLZ is uniquely effective for

treatment-resistant schizophrenia. However, many people still suffer from residual

symptoms or do not respond at all (ultra-treatment resistant schizophrenia; UTRS)

to CLZ. In this study, our aim was to build a predictive model for discriminating

CLZ monotherapy respondent and non-respondent individuals using multimodal

brain data.

For the purpose of our investigation, we used a subset of data (resting state fMRI

and DTI data with the intention of classifying subjects into groups with either TRS

or UTRS. Both fMRI and DTI data for each subject were registered to a subject

specific structural image and normalized to the MNI-152 2 mm atlas [24, 25].

As the fMRI data was collected during resting-state, the mean activity and

deviation of activity from the voxels over time is negligible compared to

task-driven fMRI data. Since a major component of our model is time dependent,

we hypothesize that the discriminatory information is hidden in the voxels with

significant variation in the activity over time. We selected a set of voxels with an

absolute mean standard deviation of greater than 105. The final preprocessed

dataset consists of one fMRI trial and one DTI trial of 2318 voxels per subject.

To create a personalized SNN model of the NeuCube, we proposed the new

aiSTDP learning algorithm to train a set of 1000 computational spiking neurons,

randomly scattered around the input neurons. The experimental results were

reported after a grid based hyper-parameter search using the leave-one-out vali-

dation protocol. The best model achieved an overall cross validated accuracy of

72%. The area under the ROC curve for this model was 0.72. Evaluation of the

confusion matrix showed equally distributed true positive/negative (UTRS: 73%,

TRS: 71%) and false positive/negative (UTRS: 27%, TRS: 29%) rates.
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We have further compared the classification performance of the model built on

fMRI and DTI with models built using only fMRI through a number of pattern

recognition algorithms (see Table 1). For modelling fMRI data, we have used three

different algorithms. The personalized SNN + STDP method uses the canonical

STDP to update the weights of the SNN model in the NeuCube architecture. The

other two algorithms used are the standard machine learning algorithms like SVM

and MLP. The proposed personalized SNN + aiSTDP outperformed the other

algorithms, not only in the overall accuracy of the model but in the true positive and

true negative metrics, which allows the model to be the most robust of all. Fur-

thermore, we have individually scrutinized the connection weights of the SNN

models trained on TRS and the UTRS groups, generated by the aiSTDP learning

algorithm. Figure 13 shows a comparison of the strongest mean connection weights

of the TRS and the UTRS groups. The majority of the strong connections are

created in the lower cerebellum and thalamus. It has been shown that by connec-

tions via the thalamus, the cerebellum innervates with motor cortical, prefrontal and

parietal lobes [26]. Following cerebellar damage, neurocognitive symptoms and a

cognitive affective syndrome including blunted affect and inappropriate behavior

have been shown [27]. Our findings confirm the recent fMRI and PET studies that

have demonstrated the involvement of cerebellum and thalamus in sensory dis-

crimination [28], attention [29], and complex problem solving. All these functional

modules are impaired in people with schizophrenia. Also a large density of strong

connections is observed in the cerebellum region in the UTRS group compared to

the TRS group. Similarly, larger number of strong connections are present in the

thalamus region of the TRS as opposed to UTRS.

Table 1 Comparison of classification performance by different pattern recognition methods on

the binary classification task

Method Data Accuracy

(%)

TP rate (%) TN rate (%)

Personalized

SNN + aiSTDP

fMRI + DTI 72 73 71

Personalized SNN + STDP fMRI 56 55 57

SVM [23] fMRI 64 64 71

AutoMLP [24] fMRI 60 60 64.2
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7 Seismic Data Modelling for Earthquake Prediction

Several computational intelligence approaches have extracted features from earth-

quake records of a particular region to predict aftershocks (smaller earthquakes

happening hours to weeks after a major event), using empirical relations from

geophysics such as the b-value (Gutenberg-Richter Law), Båth’s Law, and Omori’s

Law.

Fig. 13 Visual comparison of the strongest connections (mean weight across subjects within a

group) formed in the SNN model of the TRS (the top) and the UTRS group (bottom row). The

yellow colored cluster represents the input neurons and the green neurons are the computational

spiking neurons
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Recently we used multiple time-series readings of seismic activity prior to the

earthquake, applying the NeuCube based SNN architecture towards earthquake

prediction in New Zealand. Seismometer readings from the GeoNet web services

(by GNS science, New Zealand) have been used for earlier prediction of an

earthquake. We have used the NeuCube architecture to build an early prediction

model and tested the prediction performance on the retrospective events in the

Christchurch region of New Zealand. This region experienced major earthquake

from 2010 to 2015. The NeuCube models predict severe earthquakes with

remarkable accuracy, ranging from 75% at 24 h before the event, to 85% at 6 h

before, and 91.36% at 1 h before.

8 NeuCube Spatio-Temporal Pattern Recognition

from Satellite Images Remote Sensing

Spatio-temporal pattern recognition in remote sensing is a complex problem and the

most commonly used models for dealing with temporal information. However,

based on Hidden Markov Models (HMM) and traditional artificial neural networks

(ANN), they have limited capacity to achieve the integration of complex and long

temporal spatial/spectral components because they usually either ignore the tem-

poral dimension or over simplify its representation.

Fig. 14 a The SNN model is trained on a single earthquake in Christchurch area, from 5 days

before and up to 1 h before the actual event; b the SNN model is trained on seismicity data from

52 sites across New Zealand, from 5 days before and up to 1 h before historical large earthquakes

in Canterbury region The NeuCube SNN models were trained by seismicity data from 52 sites

across New Zealand, from 5 days before and up to 1 h before historical large earthquakes in

Canterbury (illustrated in Fig. 14). The dynamics of the SNN model learning process is visualized

at https://kedri.aut.ac.nz/neucube/seismic
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SNN explicitly encodes temporal information by transforming input data into

trains of spikes that represent time sensitive events. Our work introduced the very

first SNN computational model for crop yield estimation from normalized differ-

ence vegetation index image time series. It presented the development and testing of

a methodological framework which utilized the spatial accumulation of time series

of Moderate Resolution Imaging Spectroradiometer 250 m resolution data and

historical crop yield data to train an SNN to make timely prediction of crop yield.

The research also included an analysis on the optimum number of features needed

to optimize the results from our experimental data set. The proposed approach was

applied to estimate the winter wheat (Triticum aestivum L.) yield in Shandong

province, one of the main winter-wheat-growing regions of China. Our method was

able to predict the yield around six weeks before harvest with a very high accuracy.

Our methodology provided an average accuracy of 95.64%, with an average error of

prediction of 0.236 t/ha and correlation coefficient of 0.801 based on a nine-feature

model [30] (Fig. 15).

9 Conclusions

This chapter describes the feasibility study of the Kasabov’s NeuCube based SNN

architecture for different prominent applications of spatio/spectro temporal data.

NeuCube SNN development system along with a benchmark EEG data are avail-

able at http://www.kedri.aut.ac.nz/neucube.
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Fig. 15 Comparative analysis of the predicted yield versus the true yield for every year

(2000–2013) using different numbers of features. Figure form [30]
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