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Full course DLU, 2023, Lecture Content 

Advanced Artificial Intelligence Technologies and Applications

1.    AI and the evolution of its principles. Evolving processes in Time and Space (Ch1, 3-19)

2. From Data and Information to Knowledge. Fuzzy logic. (Ch1,19-33 + extra reading) 

3. Artificial neural networks - fundamentals. (Ch2, 39-48). Computational modelling with NN. Tut1: NeuCom.

4. Deep neural networks (Ch.2, 48-50 + extra reading).

5. Evolving connectionist systems (ECOS) (Ch2, 52-78). Tutorial 2:  ECOS in NeuCom.

6. Deep learning and deep knowledge representation in the human brain (Ch3)

7. Spiking neural networks (Ch4). Evolving spiking neural networks (Ch5)

8. Brain-inspired SNN. NeuCube. (Ch.6). Tutorial 3: NeuCube software (IA)

9. From von Neuman  Machines to Neuromorphic Platforms (Ch20 , 22)

10. Other neurocomputers: Transformers.

11. Evolutionary and quantum inspired computation (Ch.7)

12. AI applications in health (Ch.8-11)

13. AI applications for audio-visual information (Ch.12,13)

14. AI for language modelling. ChatBots (extra reading)

15. AI for brain-computer interfaces (BCI) (Ch.14)

16. AI in bioinformatics  and neuroinformatics (Ch15,16, 17,18)

17. AI applications for multisensory environmental data. AI in finance  and economics (Ch19)

nkasabov@aut.ac.nz https://www.knowledgeengineering.ai/china

Course book: N.Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence Springer, 2019, 

https://www.springer.com/gp/book/9783662577134

Additional materials: https://www.knowledgeengineering.ai/china

ZOOM link for all lectures: https://us05web.zoom.us/j/4658730662?pwd=eFN0eHRCN3o4K0FaZ0lqQmN1UUgydz09
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Lecture 11

Evolutionary and quantum-inspired 

computation (Ch.7)

1. Evolutionary Computation (EC)

2. Application of EC for parameter optimisation in NeuCom and 

NeuCube

3. Quantum information principles 

4. Quantum-inspired evolutionary algorithms

5. Applications of QiEA for parameter optimisation of spiking neural 

networks 

6. Questions
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1. Evolutionary computation   

Evolutionary computation: Learning through 

evolution

• Species learn to adapt through  genetic 

evolution (e.g. crossover and mutation of 

genes) in populations over generations.  

• Genes are carrier of information: stability vs 

plasticity 

• A set of  chromosomes define an individual 

• Survival of the fittest individuals within a 

population 

• Evolutionary computation (EC) as part of AI 

is population/generation based optimisation 

method. 

EC can be used to optimise parameters (genes) 

of learning systems.  

nkasabov@aut.ac.nz

Charles Darwin  (1809-1882)
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_______________________________________________________________________________

_______________________________________________________________________________GA: Generating populations of individuals, selecting the 

best ones to go to the next generation etc.  



Particle swarm optimisation (PSO)
(Kennedy and Eberhard, 1995)
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A particle (e.g. chromosome) is a solution (e.g. a set of parameter values of a model)

A particle is evaluated as its local best fitness (pbest) and the whole set of particle is 

evaluated as global best (gbest)

A  particle’s velocity and position is updated at every iteration (generation) based on the 

local and the global best values.

This is typical for swarms of individuals, each of them also following the best performing one 

at a time moment t.    

PSO have been developed for continuous, discrete and binary problems. 

The representation of the individuals varies for the different problems. 

Binary Particle Swarm Optimization (BPSO) uses a vector of binary digits representation for 

the positions of the particles. 
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Box 2. A pseudo code of a PSO algorithm

_________________________________________________________________

_______________

begin

t ← 0 (time variable)

1)  Initialize a population with random positions and velocities

2)  Evaluate the fitness based on objective function

3)  Select the local pbest and the global gbest

while (termination condition is not met) do

begin

t ← t+1

4)  Compute velocity and position updates of each particle

5)  Determine the new fitness

6)  Update the pbest and gbest if required

end

end
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Optimisation of the parameters of Evolving Classification Function (ECF) model in NeuCom using GA 

• Hidden nodes evolve, starting from no nodes at all.

• Each hidden node is a cluster center.

• Clusters grow in radius and shrink through a  learning 

algorithm 

• Each hidden node represents a local model ( a rule) 

that associates an input cluster with an output function, 

e.g. a constant label, a linear function, a non-linear 

function, etc

• If a new input vector belongs to a cluster to certain 

degree, than the corresponding local model applies, 

otherwise – m of the closest models are used to 

calculate the output.      

• As a general case input and/or output variables can be 

fuzzy or non-fuzzy (crisp) 

• ECF – evolving classifier function – no output MF, only 

input MF.

• ECF parameters: Rmax, Rmin, #input MF (e.g. 

1,2,3,...), m-of-n (e.g. 1,2,3,..), #iterations for training 

(e.g. 1,2,3, …

• Input features to optimise use

• (N. Kasabov, IEEE Tr SMC, 2001) 

Inputs outputs

rule(case)

nodes rj

2. Application of EC for parameter optimisation in NeuCom and NeuCube
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GA feature and parameter optimisation of ECF models in 

NeuCom

• Optimizing the parameters of 

the model and the input features

• A chromosome contains as 

“genes” all model parameters 

and input features

• Replication of individual ECF 

models and selection of:
- The best one 

- The best m averaged, etc



NeuCube SNN model parameter optimization

N.Kasabov, NeuCube: A Spiking Neural Network Architecture for Mapping, Learning and 

Understanding of Spatio-Temporal Brain Data, Neural Networks,  vol.52, 2014. 

nkasabov@aut.ac.nz www.kedri.aut.ac.nz/neucube
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NeuCube SNN model parameter optimization using GA 
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3. Quantum information principles  (section 7.2)  

Quantum information principles: superposition; entanglement, interference, parallelism 

(M.Planck, A.Einstein, Niels Bohr, W.Heisenberg, John von Neumann,  E. Rutherford)  

• Quantum bit (qu-bit) – probabilistic superposition of 1 and 0 at time t

• Quantum vector (qu-vector) – quantum chromosome   

• A measured qu-bit (collapsed) has crisp values of 1 or 0 depending on the highest probability  

• Define the fitness of the crisp chromosome according to an objective function (e.g. accuracy of 
classification) and the 

• Quantum gates – how to define the qu-bit values for the next generation  

• Applications:

– Specific algorithms with polynomial time complexity for NP-complete problems (e.g. factorising large 
numbers, Shor, 1997; cryptography) 

– Search algorithms ( Grover, 1996), O(N1/2) vs O(N) complexity)

– Quantum associative memories

– Quantum-inspired EC/EA
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More about quantum information processing (superposion and 

entanglement) 

• Supersposition: A quantum bit (qubit) may be in a state ‘1’or ‘0’, but also in a 

superposition of both to different probabilities. 

where  α and  β are complex numbers that are used to define the probability of which 

of the corresponding states is likely to appear when a qubit  is read (collapsed). 

• Normalization of the states to unity guarantees: 

• When we measure the state of a qbit (collapse the superpostion), then it is in a fixed 

state. 

• Examples:  2 ordinary bits represent at each time only one of 4 numbers, while a 2 Qbit represents all fours 

numbers at any time with their allocated probabilities. One vector of 1,000 ordinary bits can represent at any time one 

of the 2 to the power of 1000 states, while a 1000 qbit represents all these states at any time moment.  

• A popular example is the famous analogy of Schrodinger's Cat. First, we have a living cat and place it in a lead box.

At this stage, there is no question that the cat is alive. Then throw in a capsule of cyanide and seal the box. We do not

know if the cat is alive or if it has broken the cyanide capsule and died. Since we do not know, the cat is both alive

and dead, according to quantum law -- in a superposition of states. It is only when we break open the box and see

what condition the cat is in that the superposition is lost, and the cat must be either alive or dead (from WhatIs.com).

• Entanglement - two or more particles, regardless of their location, can be viewed as 

“correlated”, undistinguishable, “synchronized”, coherent. This is the basic principle 

used in the so called “teleportation” in space and time.  
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4. Quantum inspired Evolutionary Algorithms (QiEA)    

• QEA (e.g, QiGA)  use a q-bit representation of a chromosome of n “genes” at a time t: 

• Each q-bit is defined as a pair of numbers (α, β) – probability density amplitude. 

• A  n element q-bit vector can represent probabilistically 2n states at any time  

• The output is obtained after the q-bit vector is collapsed into a single state

• Changing probability density with quantum gates, e.g.  rotation gate: 

• Evolutionary computing with q-bit representation has a better characteristic of population 
diversity than other representations, since it can represent linear superposition of states 
probabilistically .
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Parameter optimisation in a high dimensional feature (variable) space –

every point denotes a model with different parameter values (“genes”). The 

problem is to select the best model according to a given optimisation 

criteria (fitness function) for a minimum iterations (generations)   

Local and global optimum points   

nkasabov@aut.ac.nz



Comparison between different algorithms in terms of  the number of 

iterations to optimise the values of variables (parameters) of a 

benchmark function

nkasabov@aut.ac.nz



5. Quantum-inspired optimisation of eSNN
(Kasabov, 2007-2008; S.Schliebs, M.Defoin-Platel and N.Kasabov, 2008; Haza Nuzly, 2010))

nkasabov@aut.ac.nz
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Benchmark Analysis – The two spiral problem 

classification 
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QiEA for the optimisation of features and parameters of a SNN for 

environmental prediction (section 7.3.2) 
S. Schliebs, M. Defoin-Platel, S. Worner and N. Kasabov (2009), Quantum-inspired Feature and 

Parameter Optimization of Evolving Spiking Neural Networks with a Case Study from Ecological 

Modeling. In Proc. of the IJCNN 2009, Atlanta, 11-19 June: IEEE Press, 2009.

nkasabov@aut.ac.nz



QiPSO (section 7.4)
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Qi computational neurogenetic models (QiCNGM) 

(section 7.3.3)

N.Kasabov, NeuCube: A Spiking Neural Network Architecture for Mapping, Learning and 

Understanding of Spatio-Temporal Brain Data, Neural Networks,  vol.52, 2014. 

nkasabov@aut.ac.nz

Quantum vector to optimise: Input features / SNN parameter/ Genes on/off and their connections
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6. Questions

1. What are EC algorithms?  

2. How EC can be applied for parameter optimisation of neural networks (e.g.

EFuNN from NeuCom: http://theneucom.com) ?

3. What are the main principles of quantum computing?

4. What are quantum -inspired evolutionary algorithms (QiEA)?

5. How QiEA can be applied for the optimisation of feature and parameters of 

spiking neural ntworks?  
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