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Abstract During the 1940’s John Atanasoff with the help of one of his students Clif-
ford E. Berry, at Iowa State College, created the ABC (Atanasoff-Berry Computer)
that was the first electronic digital computer. The ABC computer was not a general-
purpose one, but still, it was the first to implement three of the most important
ideas used in computers nowadays: binary data representation; using electronics in-
stead of mechanical switches and wheels; using a von Neumann architecture, where
the memory and the computations are separated. A new computational paradigm,
named as Neuromorphic, utilises the above two principles, but instead of the von
Neumann principle, it integrates the memory and the computation in a single mod-
ule a spiking neural network structure. This chapter first reviews the principles of
the earlier published work by the team on neuromorphic computational architec-
ture NeuCube. NeuCube is not a general purpose machine but is still the first neu-
romorphic spatio/spectro-temporal data machine for learning, pattern recognition
and understanding of spatio/spectro-temporal data. The chapter further presents the
software/hardware implementation of the NeuCube as a development system for
efficient applications on temporal or spatio/spectro-temporal across domain areas,
including: brain data (EEG, fMRI), brain computer interfaces, robot control, multi-
sensory data modelling, seismic stream data modelling and earthquake prediction,
financial time series forecasting, climate data modelling and personalised, on-line
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risk of stroke prediction, and others. A limited version of the NeuCube software
implementation is available from http://www.kedri.aut.ac.nz/neucube/

1 Introduction

The breakthrough work of Alan Turing in the 1940’s, stating the possibility of us-
ing just 0’s and 1’s to simulate any process of formal reasoning [4] lead to massive
development in the field of information theory and computer architecture. Simulta-
neously, significant progress was made by the neuroscientists in understanding the
most efficient and intelligent machine known to man, the human brain. These par-
allel advancements in the middle of the last century had made man’s imagination
of creating ’intelligent’ systems a possibility. These rational systems/agents were
thought ideally to be able to perceive the external environment and take actions
accordingly to maximise its goal, mimicking the human brain. The improvements
in computer architecture with its advances in input/output, storage and processing
power meant that the dream of artificial intelligence (AI) was now a reality and
hugely reliant.

The field of AI and machine learning has grown strength to strength from the
simple McColluch and Pitt’s linear threshold based artificial neuron model [43] to
the latest era of deep learning [37], which builds very complex models by perform-
ing a combination of linear and non-linear transformations. This is done using mil-
lions of neuron stacked in a layered fashion forming an interconnected mesh. The
tremendous push of AI towards emulation of real intelligence has been sustained
by the realisation of the Moore’s law [54] which states that the processing power
of the of central processing units (CPU) doubles in every couple of years. The scal-
able computer architecture proposed by John von Neumann in 1945 as part of the
draft of EDVAC computer [53] had to play a substantial role in accomplishing the
continuous miniaturisation of the CPU chips. In the more recent years, the CPU
chip manufacturing companies have spent billions of dollars in CMOS technology
to shrink the transistor size to a minuscule(≈ 14 nanometres) and thus keep Moore’s
law alive. It is evident that this is non-sustainable and as per well-supported predic-
tions will reach its boundary in the next five years [61].

The saturation in the scalability of the von Neumann architecture led to new
developments in computer and computing architectures. Neuromorphic computing
coined by Carver Mead in the 1980s [44] and further developed recently is one of the
paradigms of computing which has come into prominence. As the name ’neuromor-
phic’ suggests, this paradigm of computing is inspired heavily by the human brain.
Moreover, as the existence of AI is complimented by computing architectures and
paradigms, having a real neuromorphic computer architecture oriented processing
unit is a step towards the development of highly neuromorphic AI.
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1.1 Neuromorphic computing beyond von Neumann architecture

Throughout the continuous evolution of the traditional computers, von Neumann
or the stored program architecture has continued to be the standard architecture for
computers. It is a multi-modular design based on rigid physically separate functional
units. It specifically consists of three different entities:

• Processing unit: The processing unit can be broken down into a couple of sub-
units, the arithmetic and logical unit(ALU), the processing control unit and the
program counter. The ALU compute the arithmetic logic needed to run programs.
The control unit is used to control the flow of data through the processor.

• I/O unit: The i/o unit essentially encompasses all I/O the computer could possibly
do (printing to a monitor, to paper, inputs from a mouse or keyboard, and others.).

• Storage unit: The storage unit stores anything the computer would need to store
and retrieve. This includes both volatile and non-volatile memory.

Table 1: A comparison of the key contrasts between von Neumann and neuromor-
phic computing paradigm [34]

von Neumann Neuromorphic

Representation of the data Sequence of binary numbers Spike(event) timings

Memory
1. Volatile
2. Non-volatile

1. Long term memory
2. Short term memory

Plasticity(Learning) No
Adaptable via:
1. Long-term potentiation and depression
2. Short-term potentiation and depression

Processing
1. Deterministic
2. Centralised
3. Sequential

1. Stochastic
2. Decentralised
3. Parallel

These units are connected over different buses like data bus, address bus and con-
trol bus. The bus allows for the communication between the various logical units.
Though very robust, as shown in figure 1a, this architecture inherently suffers from
the bottleneck created due to the constant shuffling of the data between the memory
unit and the central processing unit. This bottleneck leads to rigidity in the archi-
tecture as the data needs to pass through the bottleneck in a sequential order. An
alternate solution of parallelising the computers has been proposed where millions
of processors are interconnected. This solution, though, increases processing power,
is still limited by the bottleneck in its core elements [56].

The neuromorphic computing paradigm as shown graphically in figure 1b, on the
contrary, draws great inspiration from our brain’s ability to manage tens of billions
of processing units connected by the hundreds of trillions of synapses using tens of
watts of power on an average. The vast network of the processing units(neurons) in
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(a) The von Neumann architecture used in
traditional computers. The red lines depict
the data communication bottleneck in the
von Neumann architecture.

(b) A graphical representation of a general
neuromorphic architecture. In this architec-
ture, the processing and memory are decen-
tralised across different neuronal units(the
yellow nodes) and synapses(the black lines
connecting the nodes), creating a natu-
rally parallel computing environment via the
mesh-like structure.

Fig. 1: A graphical comparison of the von Neumann and Neuromorphic architecture.
[34]

the brain is in a true sense a mesh. The data is transmitted over the network via the
mesh of synapses seamlessly. Architecturally the presence of the memory and the
processing unit as a single abstraction is uniquely advantageous leading to dynamic,
self-programmable behaviour in complex environments [56]. The highly stochastic
nature of computation in our brain is a very significant divergence from the bit-
precise processing of the traditional CPU. The neuromorphic computing hence as-
pires to move away from the bit-precise computing paradigm towards the proba-
bilistic models of simple, reliable and power and data efficient computing [8] by
implementing neuromorphic principles such as spiking, plasticity, dynamic learn-
ing and adaptability. This architecture morphs the biological neurons, where the
memory and the processing units are present as part of the cell body leading to de-
centralised presence of memory and processing power over the network. Table 1
lists down some of the fundamental characteristics of the von Neumann and neuro-
morphic architecture.

With significant commercial interest in sight, research community focused on the
commercial scale development of the neuromorphic chips. The most prominent of
the neuromorphic chips include the Truenorth [26, 45] from IBM, the Neurogrid
[3] developed by the Stanford University and SpiNNaker chip [20] from the Uni-
versity of Manchester, the neuromorphic chip developed in ETH INI, Zurich [27]
and others. All of these neuromorphic chips consists of programmable neuron and
synapses and uses a multitude of CMOS technologies to achieve the neuromorphic
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behaviours. The details of the neuromorphic chips are beyond the scope of this arti-
cle and are well elaborated in [29].

Numerous research [39, 40] has focused on harnessing the theoretical powers of
the spiking neural network (SNN). While the majority of the research focus on neu-
rological simulations, its importance in the real world of engineering applications
that deal with complex processes (and thus generate the spatio/spectro-temporal
data), is yet to be identified. The importance of a computational model to capture
and learn spatio/spectro-temporal (SSTD) patterns from data streams is henceforth
very significant from an application perspective. Example of problems involving
SSTD are: brain cognitive state evaluation based on EEG [9], fMRI data [14], mov-
ing object recognition from video data [11], evaluation of the response of a disease
on treatment and others. In this article, we discuss a new neuromorphic artificial
intelligence paradigm that uses SNN and the first spatio-temporal data machine
called NeuCube [33]. This framework has been recently further developed and im-
plemented as an SNN development system for applications on SSTD described in
this chapter.

The rest of the article is organised into eight sections. Section 2, briefly describes
the existing work on the neuromorphic software implementations including a brief
review of the existing neural network simulators. Section 3, concisely presents the
architecture of the NeuCube development system as a next-generation pattern recog-
nition system. Section 4 describes the generic SNN prototyping and testing module
M1 of NeuCube developed in Matlab. Further down, the implementation of the Neu-
romorphic hardware and virtual reality environment is presented in sections 5 and 6.
Section 7 elaborates on the recent development of the NeuCube software in the state
of the art Java model view control(MVC) framework. Finally, Section 8 summarises
and concludes the chapter.

2 Related work

The number of software implementations that has appeared, as a result of ongoing
research in the area of artificial neural networks, is ever growing. Majority of the
neural network software is implemented to serve two purposes:

• Data analysis: These software packages are aimed at analysing real-world data
derived from practical applications. The data analysis softwares use a relatively
simple static architecture, hence are easily configurable and easy to use. Few ex-
amples of such software are: multilayer perceptron(MLP) [2], RBF network [49],
Probabilistic network (PNN) [60], Self organizing maps(SOM) [36], Evolving
connectionist systems, such as DENFIS and EFuNN [30]. These softwares are
either available as independent packages, such as NeuCom [1], PyBrain(python)
[55], Fast Artificial Neural Network(C++) [48], or as part of a data analytics
software like Weka [24], Knime [5], Orange [12] and others.

• Research and development systems: As opposed to the data analysis softwares,
they are complex in behaviour, and require background knowledge for usage and
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configuration. the Majority of the existing SNN softwares, including NeuCube,
belong to this class.

We have briefly reviewed some of the key features of the current SNN development
systems below.

NEURON [25]: Neuron is aimed at simulating a network of detailed neurolog-
ical models. Its ability to simulate biophysical properties such as multiple channel
types, channel distributions, ionic accumulation and so on renders it well suited for
biological modelling [6]. It also supports parallel simulation environment through
(1) distributing multiple simulations over multiple processors, and (2) distributing
models of individual cells over multiple processors.

PyNEST [17]: The neural simulation tool (NEST) is a software primarily de-
veloped in C++ to simulate a heterogeneous network of spiking neurons. NEST is
implemented to ideally model neurons in the order of 104 and synapses in the order
of 107 to 109 on a range of devices from single core architectures to supercomput-
ers. NEST interfaces with python via implementation of PyNEST. PyNEST allows
for greater flexibility in simulation setup, stimuli generation and simulation result
analysis. A node and a connection comprise the core elements of the heterogeneous
architecture. The flexibility to simulate a neuron, a device or a subnetwork (which
can be arranged hierarchically) as a node, provides a major improvement over [51].
Due to the bottom-up approach of network simulation, the software allows for indi-
vidually configurable neuron states and connection setup.

Circuit Simulator [47]: The circuit simulator is a software developed in C++ for
simulation of heterogeneous networks with major emphasis on high-level network
modelling and analysis, as opposed to [25]. The C++ core of the software is inte-
grated with Matlab based GUI, for ease of use and analysis. CSIM enables the user
to operate both spiking and analog neuron models along with mechanisms of spike
and analog signal transmission through its synapse. It also performs dynamic synap-
tic behaviour by using short and long-term plasticity. In 2009, circuit simulator was
further extended to parallel circuit simulator (PCSIM) software with the major ex-
tension being implementation on a distributed simulation engine in C++, interfacing
with Python based GUI.

Neocortical Simulator [16]: NCS or Neocortical Simulator is an SNN simula-
tion software, mainly intended for simulating mammalian neocortex [6]. During its
initial development, NCS was a serial implementation in Matlab but later rewritten
in C++ to integrate distributed modelling capability [63]. As reported in [6], NCS
could simulate in the order of 106 single compartment neuron and 1012 synapses
using STP, LTP and STDP dynamics. Due to the considerable setup overhead of
the ASCII-based files used for the I/O, a Python-based GUI scripting tool called
BRAINLAB [16] was later developed to process I/O specifications for large scale
modelling.

Oger Toolbox [50]: Oger toolbox is a Python-based toolbox, which implements
modular learning architecture on large datasets. Apart from traditional machine
learning methods such as Principal Component Analysis and Independent Com-
ponent Analysis, it also implements SNN based reservoir computing paradigm for
learning from sequential data. This software uses a single neuron as its building
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block, similar to the implementation in [17]. A Major highlight of this software in-
cludes the ability to customise the network with several non-linear functions and
weight topologies, and a GPU optimised reservoir using CUDA.

BRIAN [23, 22]: Brian is an SNN simulator application programming interface
written in Python. The purpose of developing this API is to provide users with the
ability to write quick and easy simulation code [22], including custom neuron mod-
els and architecture. The model definition equations are separated from the imple-
mentation for better readability and reproducibility. The authors in [23], also empha-
sises the use of this software in teaching a neuroinformatics course [13]. A major
limitation of BRIAN is, however, the requirement of Python knowledge to run the
simulation and the lack of GUI for the non-technical user community.

The aforementioned discussion of the existing software highlights the suitability
for building highly accurate neurological models but lacks a general framework for
modelling temporal or SSTD, such as brain data, ecological and environmental data.
Further in the line of the neural network development systems, and more specifically
for SNN, where not only an SNN simulator can be developed, but a whole prototype
system (also called spatio-temporal data machine) can be generated for solving a
complex problem defined by SSTD, the NeuCube framework was proposed [30].

3 The NeuCube framework and system architecture

Fig. 2: The NeuCube framework for SSTD. The brain, shown as a source of SSTD is
only exemplary, rather than restrictive.

The NeuCube framework for SSTD, illustrated, but not restricted to brain data,
is depicted in figure 2 [35] and explained below.

• Data encoding: The temporal information generated from the source(e.g. brain,
earthquake sites) is passed through a data encoder component using a suit-
able encoding method, such as BSA [30], Temporal contrast, GAGamma[58]
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and others. It transforms the continuous information stream to discrete spike
trains( f : Rn×t →{0,1}n×t ).

• Mapping spike encoded data and unsupervised learning: The spike trains are then
entered into a scalable three dimensional space of hundreds, thousands or mil-
lions of spiking neurons, called SNNcube (SNNc), so that the spatial coordinates
of the input variables (e.g. EEG channels; seismic sites, and so on) are mapped
into spatially allocated neurons in the Cube, and an unsupervised time-dependent
learning rule [59][21] is applied (g : {0,1}n×t → 0,1m×t |m >> n).

• Supervised learning: After unsupervised learning is applied, the second phase of
learning is performed, when the input data is propagated again, now through the
trained SNNc, and an SNN output classifier/regressor is trained in a supervised
mode(ŷ := h(β ,φ(0,1)))[31]. For this purpose, various SNN classifiers, regres-
sors or spike pattern associators can be used, such as deSNN [31] and SPAN
[46].

The NeuCube software development system architecture uses the above men-
tioned core pattern recognition block described in figure 2 as the central compo-
nent and wraps a set of pluggable modules around it. The pluggable modules are
mainly developed for: (1) Using fast and scalable hardware components running
large scale applications; (2) Immersive model visualisation for in-depth understand-
ing and analysis of the SSTD and its SNN model; (3) Specific applications like
personalised modelling, brain computer interfaces and so on (4) Hyperparameter
optimisation; and others.

(a) The NeuCube software development ar-
chitecture for SNN applications on spa-
tio/spectrotemporal data.

(b) NeuCube Modules M1, M2, M3 and M4
integrated in the KEDRI NeuLab, also show-
ing some application oriented devices, such
as Oculus for 3D visualisation, a SpiNNaker
small neuromorphic board, Emotiv EEG de-
vice, an EEG-controlled mobile robot with
Kyushu Institute of Technology

Fig. 3: The NeuCube SNN development system for SSTD.

Figure 3a shows the graphical representation of the NeuCube SNN development
system for SSTD and fig. 3b shows the standard configuration in a real life setup
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in the KEDRI NeuLab. Each module in figure 3a is designed to perform an inde-
pendent task and in some instances, written in a different language and suited to the
specific computer platform. All of the modules, however, are integrated via a com-
mon communication protocol in module M5. A brief description of the standard
modules from figure 3a is given below:

Module M1 It is a generic prototyping and testing module written in Matlab,
where an SNN application system can be developed for data mining, pattern recog-
nition and event prediction from temporal or SSTD. Additional functionalities like
dynamic visualisation, network analysis toolbox, parameter optimisation are in-
cluded in this module. Section 4 describes Module M1 in a more elaborate fashion.

Module M2 is a python based simulator of NeuCube for large scale applications
or implementation on a neuromorphic hardware (Module M3). This application is
developed on top of PyNN package, which is a Python-based simulator-independent
language for building SNN. The NeuCube-PyNN [57] module is not only compat-
ible with existing SNN simulators described previously (e.g. Neuron, Brian), but
can also be ported to a large neuromorphic hardware such as the SpiNNaker, or on
any neuromorphic chip, such as the ETH INI chip, the Zhejiang University chip,
and others. The advantage of such hardware lies in the extreme energy efficiency of
computation, allowing for the large-scale massively parallel neuromorphic system
to run more efficiently. Module M3 is dedicated for such hardware implementations
of NeuCube. Section 5 has a detailed description about Modules M2 and M3.

Module M4 allows for a dynamic visualisation of the 3D structure and connec-
tivity of the NeuCube SNN [41, 42]. Due to the 3-dimensional structure as well as
the large number of neurons and connections within NeuCube a simple 2D con-
nectivity/weight matrix or an orthographic 45-degree view of the volume is insuf-
ficient. We created a specialised visualisation engine using JOGL (Java Bindings
for OpenGL) and GLSL (OpenGL Shading Language). This engine can render the
structural connectivity as well as the dynamic spiking activity. Using 3D stereo-
scopic head-mounted displays such as the Oculus Rift, the perception and under-
standing of the spatial structure can be improved even further. Section 6 describes
module M4 in detail.

Module M5 is the input/output and the information exchange module. This mod-
ule is responsible for binding all the NeuCube modules together irrespective of the
programming language or platform. Experiments that are run on any module pro-
duces prototype descriptors containing all the relevant information, which are ex-
ported and imported as structured text files, and is compatible with all the modules.
We have used language independent JSON (Javascript object notation) format as a
structured text, which is lightweight, human readable and can be parsed easily. The
present implementation of the I/O module supports the use of three types of data
and SNN prototype descriptors. They are: (1) Dataset descriptor, which consist of
all the information relevant to the raw and encoded dataset; (2) Parameter descriptor,
which is responsible for storing all the user defined and changeable parameters of
the software; and, (3) SNN application system descriptor, which stores information
related to the NeuCube SNN application system.
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Module M6 extends the functionality of module M1, by adding functions for
prototyping and testing of neurogenetic data modelling. These functions include
models for genetic and proteomic influences in conjunction with brain data. This is
provided as an optional feature for specific applications. This module is written in
Java and can be further developed as an open source NeuCube SNN development
system.

Module M7 facilitates the creation and the testing of a personalised SNN sys-
tem. It extends module M1 by including additional functionalities for personalised
modelling which is based on first clustering of integrated static-dynamic data using
new algorithm dWWKNN (dynamic weightedweighted distance K-nearest neigh-
bours) and then learning from the most informative subset of dynamic data for the
best possible prediction of output for an individual. This module is for optional use
in the context of specific applications[32] (USA patent 2008). This module is for
optional use in the context of specific applications [15].

Module M8 is currently being developed as a plugin for multimodal brain data
analysis. It aims to integrate different modalities of brain activity information (.g,
EEG, fMRI, MEG) and structural Tractography (DTI) information, in NeuCube, for
the purpose of better modelling and learning. This module is also bound to specific
applications.

Module M9 is an optional module for data encoding optimisation and event de-
tection. This module includes several data encoding algorithms for mapping analog
signal to spike trains based on different data sources[58].

Module M10 provides an additional feature of online learning for real-time data
analysis and prediction. In this module, continuous data streams are processed in
the form of continuous data blocks.

4 NeuCube implementations for prototyping and testing

The generic prototyping and testing tools or Module M1 are the GUI based im-
plementations for the rapid development of SNN application prototype systems for
temporal or spatio/spectro-temporal data. It can also be used for research on SNN
for general purpose pattern recognition from SSTD. Currently, there are two parallel
implementations of the NeuCube system in Matlab and Java. This section describes
the Matlab system in detail.

The Matlab implementation is designed as a set of continuous signal processing
steps as shown in figure 2. The user interface of NeuCube M1, as shown in figure 4,
is built as a logical stepwise process.
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Fig. 4: NeuCube-M1 user interface and panel descriptions

4.1 Data exchange

The data exchange component is used to import or export user defined information
to and from the software, which includes temporal or SSTD data, already developed
SNN systems, parameters and results. The NeuCube-M1 interacts with the external
environment using four data descriptors. They are the following:

• Dataset descriptor: The Dataset descriptor consists of the data (and the metadata),
that is to be learned and analysed. In the majority of the cases, a dataset contains
a set of time series samples and the output label/value for the sample set. It is also
possible to add miscellaneous information like feature name, encoding method
and other meta information in the dataset.

• SNNc descriptor: The SNNc descriptor contains all information related to the
structure and learning of the SNN. Some of the most important information
stored in this descriptor are the spatial information of the input and reservoir
neurons,structural information of the SNNc and the state of the SNNc during
learning.

• Parameter descriptor: The parameter descriptor stores all the user defined param-
eters including hyperparameters of data encoding algorithms, the unsupervised
learning algorithm and the supervised learning algorithm.

• Result descriptor: Result descriptor stores information about the experimental
results produced by NeuCube.
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Descriptor type Mat JSON CSV
Dataset yes yes yes
Cube yes yes no

Parameter yes yes no
Result yes no yes

Table 2: Supported file format for descriptors

NeuCube-M1 supports three different file formats, Mat (binary), JSON (struc-
tured text) and CSV (comma separated plain text). Table 2 describes the supported
file formats for each of the descriptor type. As a heuristic rule, mat format is rec-
ommended for achieving fast I/O. The CSV files are the recommended choice for
import/export of dataset and results for later analysis. The JSON format is recom-
mended for inter-modular communication. Loading a dataset (temporal informa-
tion) is the entry point to the software, and can be done by loading a csv or a mat
file from the file menu. The import and export of all the descriptors can be performed
throughout the lifetime of the experiment.

4.2 Algorithm interactions

NeuCube-M1, being a general purpose pattern recognition software, allow users to
interact with the pattern recognition and signal processing algorithms via the algo-
rithm controls panel, shown in figure 4. The algorithm control panel includes a set
of buttons for configuring and running the step by step process of data encoding,
network initialisation, unsupervised learning(by training the SNNc) and supervised
learning. The software uses a guided approach for performing the algorithmic steps
by enabling or disabling buttons after every operation. Figure 5a, 5b, 5c and 5d
shows the individual user interaction panels for encoding, initialisation, unsuper-
vised and supervised learning respectively. Each panel allows users to choose from
a set of algorithms and corresponding hyperparameters. For example, the data en-
coding panel(5a), that encode the real-valued signal to spike trains, provide the op-
tion of choosing from a set of encoding algorithms and its hyperparameters from the
drop down menu. The initialisation panel, as shown in figure 5b, initiates the SNNc.
NeuCube allows making use of the natural spatial ordering (if any) of the features
of the data as input to the system. This can be achieved by loading an external csv
coordinate file from mapping location option in the encoding panel. If a natural spa-
tial ordering is not present in the data, NeuCube uses the graph matching technique,
to enforce a spatial arrangement of the input variables based on their temporal simi-
larities. All the panels for algorithmic control interacts with the visualisation panels,
for visualisation and analysis of the data and the models.
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(a) data encoding
panel

(b) SNNc initialisation
panel

(c) Unsupervised
learning panel

(d) Supervised learn-
ing panel

Fig. 5: Algorithmic controls through the NeuCube-M1 UI’s

4.3 Integrated visualisation and network analysis

visualisation and model analysis is an integral and unique feature of the NeuCube ar-
chitecture. As discussed in [35], a NeuCube model acts as a white box, i.e., a learned
NeuCube model outputs analysable and interpretable spatio-temporal patterns for
knowledge discovery. The visualisations in the M1 module are rendered in the ’3D
visualisation panel’ and ’output layer visualisation panel’ and can be manoeuvred
by using the controls under the ’dynamic visualisation panel,’miscellaneous tools’
and ’menu bar’ in the user interface of Module M1.

Visualisation capabilities of NeuCube M1 module includes: comparative display
of real and encoded data; online dynamic visualisation of unsupervised learning;
static visualisation of the SNNc model and the output readout layer and visualisa-
tion; and SNNc network analysis.

4.3.1 Visualisation of data encoding:

The Current version of the M1 module includes an offline encoding and visualisa-
tion scheme, but real-time online encoding and visualisation for streamed data is
part of another specialised module - Module M10.

4.3.2 Visualisation of 3D SNNc model:

The SNNc in the NeuCube architecture learns the spatio-temporal patterns over time
using the spikes transmitted by the spiking neurons. The SNNc also forms relation-
ships by regulating the connection strengths between the neurons. The visualisation
and analysis of this learning process are of utmost importance for knowledge dis-
covery. The unsupervised learning process can be visualised dynamically online,
while the system is learning, or can be saved to a movie for later usage and analysis
by using dynamic visualisation panel. The plots can be rendered in a continuous, or
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stepwise fashion. It is also possible to specify the type of activity to be rendered on
the go, such as the spiking behaviour, evolution of connection, and others.

The static visualisation of the SNNc represents a snapshot of the final state of
the cube at the end of the learning period. The option for static visualisation of the
SNNc can be found in the view drop down under the menu bar. Figure 6a shows
an example of the static visualisation of the spatial relationships formed via the
connections below a defined threshold. The colour of the neurons in figure 6b, on
the other hand, represent the spike emission count.

(a) Visualisation of relationships formed in
the brain shaped SNNc at the end of unsu-
pervised learning. The blue lines represent
positive connections, and the red lines rep-
resent negative connections

(b) Visualisation of spike emission density.
The brighter neurons represent higher spike
count

Fig. 6: Static visualisation of SNNc model

4.3.3 SNNc (network) analysis:

The network analysis panel can be used for analysis of the SNNc network con-
tent. The network analysis consists of two major functionalities: (1) Neuron cluster
analysis; (2) Information route analysis. An example of neuron cluster analysis visu-
alisation is shown and described in figure 8a, 8b and 8c. Information route analysis
is used for analysing information propagation route of the spikes generated by the
spiking neurons. This analysis is based on the concept of the rooted tree. The type of
information can be chosen by selecting the trace with drop down. Different methods
of analysis is described below in brief:

• Max spike gradient: Shows a tree rooted by the input neuron, where a child neu-
ron is chosen to be connected to a parent neuron, if it receives spike from its
parents.
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(a) Example of neuron clus-
tering based on connection
weights of the network

(b) average one to one inter-
action between the input neu-
ron clusters shown in figure
7a. The thicker lines signify
more interaction.

(c) Pie chart depicting the
number of neurons belonging
to an input cluster group

Fig. 7: Neuron cluster analysis by network analysis toolbox

• Spreading level: shows a tree from the input neuron to its neighbourhood which
reflects the spreading of the spikes. The level number parameter defines the
neighbourhood of spread.

• Information amount: Shows a tree rooted by the input neuron, where a child
neuron is chosen to be part of the tree, only if it receives a defined percentage of
spikes from its parent neuron. The percentage can be specified by the information
box, where 0.1 means 10% spikes.

4.3.4 Output layer visualisation:

The output layer visualisation is concerned with the K-nearest neighbour based
deSNN discriminator used as a supervised learning algorithm in the M1 module.
The output layer renders a set of spiking neurons, where each output neuron repre-
sents the class label (or the regression value) assigned to one input SSTD sample.

4.4 Parameter optimisation

Parameter optimisation is developed to allow users to search for the optimal set of
hyperparameters that minimises the test accuracy of the NeuCube prototype system
(model), either for classification or regression. The computational time for param-
eter optimisation depends on the number of parameters to be optimised and the
size of the NeuCube model. Parameter optimisation in NeuCube Module M1 can
be performed using various methods, such as: Grid search; Genetic Algorithm; Dif-
ferential Evolution; Quantum-Inspired Evolutionary Algorithms, PSO, and so on.
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The current release of NeuCube M1 includes two methods (Grid search and Genetic
algorithm).

5 Implementations on hardware and neuromorphic chip

The NeuCube is also appropriate for implementation on dedicated neuromorphic
hardware systems, or distributed computing platforms. Due to the fact that the model
is by nature highly scalable, it requires a highly scalable computation platform.

As traditional von-Neumann computational architectures reach their limits [18,
52] in terms of power consumption, transistor size, and communication, new ap-
proaches must be sought. Neuromorphic hardware systems, especially designed to
solve neuron dynamics and able to be highly accelerated compared to biological
time, are a response to these concerns. Systems such as analog VLSI or the SpiN-
Naker are advantageous by comparison to software based simulations on commod-
ity computing hardware in areas such as biophysical realism; density of neurons per
unit of processing power; and significantly lowered power consumption [19, 28].
This is not to say that simulations of the NeuCube cannot occur on traditional com-
puting architectures; merely that dedicated hardware is advantageous in these areas
and may be more appropriate for large-scale modelling.

To address this opportunity, a cross-platform version utilising the PyNN API in
Python has been written to extend the modular framework established in [57]. This
version is targeted primarily towards neuromorphic hardware platforms but is also
applicable to commodity distributed hardware systems depending on the simulation
backend chosen.

PyNN [10] is a generic SNN simulation markup framework that allows the user
to run arbitrary SNN models on a number of different simulation platforms, in-
cluding software simulators PyNEST and Brian, and some neuromorphic hardware
systems such as SpiNNaker and FACETS/BrainScaleS. It provides a write once,
run anywhere (where anywhere is the list of simulators it supports) facility for the
development of SNN simulations.

One of the possible neuromorphic platforms for the implementation of a Neu-
Cube SNN prototype system developed in module M1 or in any other modules of
the NeuCube architecture, is the SpiNNaker device, currently in development at
the University of Manchester. SpiNNaker is a general-purpose, scalable, multichip,
multicore platform for the real-time massively parallel simulation of large-scale
SNN [19]. Each SpiNNaker chip contains 18 ARM968 subsystems responsible for
modelling up to one thousand neurons per core, at very low power consumption.
These chips communicate through a custom multicast packet link fabric, and an ar-
bitrary number of these chips can be linked together, with the assumption that the
networks simulated exhibit some kind of connection locality. The small-world con-
nection structure used in the NeuCube and its scalable nature are appropriate for
implementation on this type of hardware.
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Alternative implementations of the NeuCube on neuromorphic hardware are cur-
rently being pursued on the INI Neuromorphic VLSI systems and the Zhejiang Uni-
versity FPGA system.

6 Dynamic Immersive visualisation and interpretation

The complexity of the network within NeuCube, with regards to the sheer number
of neurons and connections, and their 3-dimensional structure requires a specialised
visualisation system. These connections and their evolution over time is a signifi-
cant source of information about the data processed therein. A mere orthographic
45-degree view or a 2D connectivity/weight matrix or of the volume would be insuf-
ficient for this amount of data. For this reason, we created a specialised visualisation
engine for NeuCube datasets that use JOGL (Java Bindings for OpenGL) and GLSL
(OpenGL Shading Language) shaders, enabling us to render up to 1.5 million neu-
rons and their connections on relatively recent graphics cards with 60 frames per
second or more.

For efficiency, neurons are rendered as stylised spheres that change the size and
the colour based on spiking activity. Connections are rendered as lines with different
colours depending on their weight (excitatory: green, inhibitory: red). Spiking activ-
ity is also visualised as white pulses travelling along these connections. Additional
visualisation modes include detection of find hot paths, connection length, and the
ability to view the 3D structure in slices. Using a 3D cursor, neurons can be viewed
individually, including their configuration parameters and their current activation
potential. There are also controls for playing back, pausing, and changing the speed
of spiking activity during the training process as well as during online processing.
This is a powerful mechanism for further understanding the temporal behaviour or
NeuCube.

By using display hardware such as 3D stereoscopic head-mounted displays
(HMD) like the Oculus Rift or the HTC Vive, the perception of the spatial struc-
ture of the network and the neuron positions is increased. The full potential of the
visualisation unfolds in a motion capture space, where the camera perspective and
the cursor node position and orientation are controlled by markers that are attached
on the actual HMD and a cursor implement (see fig. 8). This facility enables the user
to literally ’walk through’ NeuCube, to observe structural and dynamic behaviour,
and to select individual neurons with the cursor in a natural manner using a joystick.

Our solution [41, 42] differs from other neural network specific visualisation
tools such as BrainGazer [7] and Neuron Navigator (NNG) [38] in that the user
can naturally navigate through the 3D space by simply walking and interact with
it by gesturing instead of having to use the mouse and memorise keyboard short-
cuts. Closer to our visualisation is the work of [62], who are using a Computer
Assisted Virtual Environment (CAVE) to visualise the spatial structure and activity
of an SNN. However, due to the limited space within a CAVE, navigation by simply
walking is not possible and requires indirect interaction, e.g., by using a controller.
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These technologies also do not allow for multiple concurrent users, whereas our sys-
tem is limited only by the available hardware (HMDs) and can easily be extended
due to its modular software architecture.

On the numerous occasions where Module M4 has been used at our facility, we
observed that people are quickly starting to walk around and to look at structures.
The visualisation and interaction metaphors such as selecting and monitoring indi-
vidual neurons via the 3D cursor are very intuitive for new and experienced users.
Overall, M4 is a vital and very useful tool for facilitating a better understanding of
NeuCube through 3D rendering of and intuitive navigation within the structure.

Fig. 8: 3D visualisation of the spatial and dynamic structure of a NeuCube applica-
tion model.

7 Java implementation of the NeuCube architecture

The Java implementation integrates the modules M1, for generic prototyping; M4,
for a dynamic 3D visualisation of the NeuCube SNN; M5, for data exchange; M6 for
neurogenetic data modelling and; M10, for online learning for real time data analy-
sis. Besides the off-line mode, this version incorporates new methods for modelling
large and fast on-line multisensory spatiotemporal stream data. Additionally, it in-
tegrates a novel approach to map and analyse data that arises from diverse input
variables captured by each element of a sensor network.

The Java implementation is based on the model-view-controller (MVC) design
pattern. The model, which captures the behaviour of the NeuCube, is developed in
Java 8 (JNeuCube) and can be executed in a command line as shown in figure 9a;
and the view and the controller (user interface), in JavaFX 8 (NeuCubeFX) as shown
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in figures 9b and 9c. Similar to the Matlab implementation, both Java versions are
built as a logical step wise processes that can be analysed individually.

(a) JNeuCube execution through a
command line.

(b) Graphic user interface.

(c) Dynamic 3D visualisation.

Fig. 9: JNeuCube MVC architecture.

7.1 Graphic user interface (GUI)

The software environment is formed by two main sections: the workflow section,
which contains NeuCubes functionality, and the visualisation and network analysis
section, which allows analyse and interpret spatiotemporal patterns.

7.1.1 Workflow

This section is formed by four main modules (see figure 10) that allow users to
interact with the algorithms and methods for solving pattern recognition tasks.
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(a) Data (b) Initialisation (c) Training (d) Classification

Fig. 10: Workflow controls in JNeuCube. Every module involves several steps that
can be controlled separately.

Data module

In this module, the user can import the SSTD and define the type of pattern recog-
nition problem, classification or regression. Here, the user also defines the number
of spatiotemporal variables to work with, e.g. the air speed, atmospheric pressure,
temperature, and so on. Every variable can be separately analysed in a different 3D
SNN that interact together for solving the problem in hand.

The data exchange (import and export) is a pivotal feature for information anal-
ysis. In its architecture, this version has an I/O layer that allows the user to process
information in an offline mode (data modelling and prototyping), and in an online
mode (online learning and recall). It can also store its state at every step (persistence
of the model) and brings the possibility of data transfer to and from the Matlab ver-
sion. Saving a NeuCube project into a file involves storing all information related to
the set of time series, the algorithms and methods utilised for building the structure
of the SNN, the validation methods, the training algorithms for both unsupervised
and supervised learning, the spiking activity and the connection weights before and
after the unsupervised learning, the information about the experimental results, and
the parameter values for 3D visualisation.

The current version can support three different file formats for different modules:
CSV (comma separated plain text), for loading a data set (temporal information) to
work in an offline mode for data modelling and prototyping, and for exporting the
SNN structure (spiking activity and connectivity); and XML (structured data and
communication protocol), for persistence of the NeuCube at every stage. One of the
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new features implemented in this Java version is the reading and writing modules
for online stream data processing. These modules allow users to implement methods
to communicate with any data source and send information to any device.

Initialisation module

This module allows the user configure the 3D structure of the SNN through three
simple steps. In the first step the user can select and configure the properties of
the spiking neuron model, so far a simplification of the leaky integrate and fire
model, and the Izhikevich model are implemented. However, any other model can
easily be implemented. In the second step, the user can define the dimensions of
the SNN by choosing the number of neurons per axis (x, y, z) or by choosing a file
containing the coordinates of a map (e.g. the Talairach atlas which maps the location
of brain structures). A third step is enabled for defining the network connectivity,
either using and parameterising a connection algorithm or importing the connections
and synaptic weights from files. Finally, in the fourth step, the user can visualise a
list with the location and the type (input or reservoir) of all neurons in the SNN. By
selecting a neuron in the list, the software shows its details like the number of firings
emitted and received, and the pre and post synaptic neurons connected as shown in
figure 11.

Training module

After initialization, the user can start to perform experiments. The first step is con-
figuring the cross validation (Monte Carlo or k-fold) to assess the generalisation of
the model to an independent data set. Then, selecting the encoding algorithm trans-
forms the spatio-temporal data into spike trains that NeuCube can process. Hidden
patterns can be extracted through an offline or online unsupervised training. In an
offline mode, it is possible to record every state of the NeuCube during learning and
analyse its behaviour at any point of interest. In an online mode, only the states be-
fore and after learning can be analysed. Currently, the spike time dependent plastic-
ity (STDP) rule is implemented, but other learning rules can also be implemented.
The last step of this module corresponds to the supervised training. This learning
method recognises the temporal pattern produced after the unsupervised learning
for classification or regression tasks. Similar to previous modules, different training
methods can be implemented; at present, only the deSNN is available.

Classification

This is the last module that directly involves the algorithms and methods utilised by
the NeuCube for pattern recognition. Here, an offline and an online classification
of new data can be performed. It is also possible to visualise the spiking activity
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(a) Initialisation module (b) Neuron’s details

Fig. 11: Selection and visualisation of the detail of a neuron in the reservoir of
JNeuCube.

produced while the data is introduced to the SNN. Finally, the user can visualise
statistical results such as the confusion matrix and its derivations for generalisation
analysis.

7.1.2 Visualisation and network analysis

The aim of this section is to communicate information clearly and efficiently via sta-
tistical graphics, plots, and a 3D dynamic visualisation of the NeuCube SNN. This
is an effective module that helps users analyse and reason about data, spatiotemporal
patterns and learning processes.
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Dataset visualisation

With this module, users can analyse every sample and feature of a data set. The
NeuCubeFX makes data more accessible, understandable and usable by including
tables and charts to visualise raw and encoded (spike trains) data as shown in figure
12.

Fig. 12: JNeuCube Data visualisation before (top chart) and after (bottom chart)
encoding.

3D dynamic visualisation

A characteristic feature of the NeuCube is the 3D dynamic visualisation module.
Here, research scientists can explore how the data is being processed and interpreted
by the NeuCube model.

The unsupervised learning can be dynamically visualised while the system is
learning in an online mode (streamed data in real time). In an offline mode, ev-
ery moment and state of the NeuCube can be saved during the learning process.
Then, the user can go to any moment of such process and explore the spiking ac-
tivity and/or the evolution of connections. At this point, the user can also rotate the
NeuCube and analyse different areas of interest, study the properties of a particu-
lar neuron, or how the connection between two neurons changed from one time to
another.

The recall process can also be dynamically visualised, during the stimulation pro-
cess, it is possible observe the spiking activity produced by the data sample pattern.
Figure 13 shows the 3D visualisation of a brain shaped SNNc.
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(a) Shows the complete spik-
ing neural network.

(b) Shows the reservoir (blue
spheres) and input neurons
(dark green spheres).

(c) Shows the connectivity
among neurons. The blue and
red lines respectively rep-
resent positive and negative
connections.

Fig. 13: Snapshots of the JNeuCube dynamic 3D visualisation of the NeuCube model
using the Talairach atlas for EEG data processing.

Mapping and visualising multiple input variables is a novel feature included in
this version. For example, in sensor network applications, a node can provide vari-
ous types of output (temperature, humidity, air pressure, and so on.) at the same time.
Here, we decompose a multidimensional SNNc model into several SNNc models,
each of them representing one input variable. In Figure 14 we show an example of
modelling a sensor network. There, every node measures the concentration of three
different greenhouse gases.

(a) O3 (b) CO (c) NO2

Fig. 14: Example of modelling a greenhouse gases sensor network. Different spik-
ing activity and connection evolution are produced by every input variable (ozone,
carbon monoxide and nitrogen dioxide).

Any component of the 3D visualisation such as neurons, connection or the scale
of the network, can be controlled through the 3D display tab (see Figure 15).
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Fig. 15: 3D display control in JNeuCube.

7.2 Network analysis

Analysing and interpreting spatiotemporal patterns produced during learning is a
unique feature that makes NeuCube acts as a white box. The statistics module allows
the user to discover new knowledge related to: the number of positive and negative
connections (figure 16a), the minimum and maximum values of the synaptic weights
(figure 16b), the number of fired neurons and their descendants (figure 16c), the
number of spikes produced by each neuron (figure 16d), the spike raster (figure
16e), and the network conductance described (figure 16f).

8 Conclusion

The chapter describes the main principles and applications of the first neuromorphic
spatio-temporal data machine NeuCube. NeuCube is also a development system for
a wide scope of applications. Its current implementation consists of 10 modules,
written in 3 languages that are compatible through a common interface and shared
data and structure formats. A free copy of the main NeuCube module as a limited
and trial version is available from: http://www.kedri.aut.ac.nz/neucube/.
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(a) Connection activity (b) Synaptic weights evolu-
tion

(c) Network firing activity

(d) Firing activity per neuron (e) Spike raster (f) Network conductance

Fig. 16: Network analysis in JNeuCube.
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