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Full course DLU, 2023, Lecture Content 

Advanced Artificial Intelligence Technologies and Applications

1.    AI and the evolution of its principles. Evolving processes in Time and Space (Ch1, 3-19)

2. From Data and Information to Knowledge. Fuzzy logic. (Ch1,19-33 + extra reading) 

3. Artificial neural networks - fundamentals. (Ch2, 39-48). Computational modelling with NN. NeuCom.

4. Deep neural networks (Ch.2, 48-50 + extra reading).

5. Evolving connectionist systems (ECOS) (Ch2, 50-78). Experiments with NeuCom.

6. Deep learning and deep knowledge representation in the human brain (Ch3)

7. Spiking neural networks (Ch4). Evolving spiking neural networks (Ch5)

8. Brain-inspired SNN. NeuCube. (Ch.6). NeuCube software (IA)

9. Evolutionary and quantum inspired computation (Ch.7)

10. AI applications in health (Ch.8-11)

11. AI applications for computer vision (Ch.12,13)

12. AI for brain-computer interfaces (BCI) (Ch.14)

13. AI for language modelling. ChatBots (extra reading)

14. AI in bioinformatics  and neuroinformatics (Ch15,16, 17,18)

15. AI applications for multisensory environmental data (Ch.19)

16. AI in finance  and economics (Ch19)

17. Neuromorphic hardware and neurocomputers (Ch20). 
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Course book: N.Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence Springer, 2019, 

https://www.springer.com/gp/book/9783662577134

Additional materials: https://www.knowledgeengineering.ai/china

N. Kasabov Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering, MIT Press, 1996. 

ZOOM link for all lectures: https://us05web.zoom.us/j/4658730662?pwd=eFN0eHRCN3o4K0FaZ0lqQmN1UUgydz09
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Lecture 4.

Deep Neural Networks

(Ch2 from the text book, 48-50 + extra reading)

1. Convolutional neural networks (CNN) and deep neural networks (DNN).

Advantages and problems.

2. Recurrent NN. Reservoir computing and Liquid State Machines

3. Hybryd systems that combine NN and FS

4. Developing MLP applications in NeuCom (Tutorial, Ms Iman AbouHassan)

5. Questions for individual work
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1. Convolutional NN (CNN) and deep NN (DNN)

The input data is segmented into segments and a function is allocated to 

each segment that can be performed in a neuronal unit. 
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Deep NN (DNN)

• Neural networks that have many layers of neurons and connections. 

• They are MLP with more layers:
– A single hidden layer MLP trained by the BP algorithm  

– Multiple layers MLP, still trained by a BP algorithm:
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Forward pass:

BF1. Apply an input vector x and its corresponding output vector y (the desired output).

BF2. Propagate forward the input signals through all the neurons in all the layers and

calculate the output signals.

BF3. Calculate the Errj for every output neuron j as for example:

Errj = yj - oj, where yj is the jth element of the desired output vector y.

Backward pass:

BB1. Adjust the weights between the intermediate neurons i and output neurons j

according to the calculated error:

wij(t+1) = lrate. oj(1 - oj). Errj. oi + momentum. wij (t)

BB2. Calculate the error Erri for neurons i in the intermediate layer:

Erri =  Errj. wij

BB3. Propagate the error back to the neurons k of lower level:

wki(t +1) =lrate.oi(1 - oi). Erri.xk + momentum. wki(t)



Early deep convolutional NN in computer vision
Spatial features are represented (learned) in different layers of neurons

Fukushima's Cognitron (1975)  and Neocognitron (1980) for image processing
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ChatGPT (https://chat.openai.com) describes DNN as:
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• Deep Neural Networks (DNNs) are a subset of Artificial Neural Networks (ANNs) that 
consist of multiple layers of interconnected neurons. These networks are designed to 
mimic the way the human brain works, by processing information through multiple 
layers of neurons that progressively extract more complex features from the input data.

• Each layer in a DNN is composed of a set of neurons that receive input from the 
previous layer and produce output that is passed to the next layer. The neurons in each 
layer are connected to the neurons in the next layer by a set of weights, which 
determine the strength of the connection between them. During the training phase of 
the network, these weights are adjusted using a process called backpropagation, which 
involves iteratively adjusting the weights to minimize the difference between the 
network's predicted output and the actual output.

• The number of layers in a DNN can vary, but typically they have at least three layers: an 
input layer, one or more hidden layers, and an output layer. The input layer is where 
the input data is fed into the network, and the output layer produces the final output of 
the network. The hidden layers are responsible for processing the input data and 
extracting features that are used to make predictions.



Advantages and problems with DNN

Advantages:

- Deep NN are excellent  for vector, frame- based data (e.g. image 

recognition) 

- DNNs have been successful in a wide range of applications, including image 

and speech recognition, natural language processing, and autonomous driving. 

Problems: 

- Modelling of spatio-temporal data 

- Knowledge extraction and explainability. 

- Training deep neural networks can be challenging due to the large number of 

parameters and the potential for overfitting. Techniques such as regularization, 

dropout, and batch normalization are often used to improve the performance of 

DNNs and prevent overfitting.
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2. Recurrent NN. Reservoir Computing and Liquid State 

Machine (LSM) 
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The liquid transforms the input into Liquid states x(t)

which are mapped by a readout function to a 

trainable  classifier to [produce an output v(t)=f(x(t)) .

 

Feedforward 
connections 

Feedback 
connections 

Lateral  
connections 



3.Hybrid systems that combine NN and fuzzy rule based

models

(Example stock value prediction)
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Fuzzified data

Current price

Yesterday's price
(crisp values)

Predicted price

(crisp value)

Trading rules

(fuzzy)

Political situation

Economic situation
(fuzzy values)

Decision (buy/sell/hold)

(fuzzy & crisp values)

Rules
extraction
module

Neural
network

Neural
network

Fuzzy
rule based
decision

1. N.Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired AI, Springer 2019 (course book). 

2. N. Kasabov Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering, MIT Press, 

1996 (additional reading)
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4. Developing NN applications in 

the NeuCom software environment (www.theneucom.com)

Computational modelling with NN:

- Data preparation;

- Feature ranking and feature selection;

- NN methods for classification;

- NN methods for regression (time series prediction);

- NN methods for explanation (rule extraction; knowledge discovery);

• NeuCom is a generic environment, that incorporates 60 traditional and new techniques

for intelligent data analysis and the creation of intelligent systems

• A free copy available for education and research from: www.theneucom.com

http://www.theneucom.com/
http://www.theneucom.com/


MLP for classification

• The outputs are 

class labels 

• Calculating the 

confusion matrix:

– True-positive 

(sensitivity)

– True negative 

(specificity)

• Iris data 

• Comparison 

between different 

methods in 

NeuCom
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MLP for regression 

• Time series prediction

• Choosing the time-lags and 

the features

• Case studies using NeuCom

• Training on data

• Model verification

• Gas furnice time series 

prediction

• Stock index time series 

prediction



Course References 
1. N.Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired AI, Springer 2019 (course book). 

2. N. Kasabov Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering, MIT Press, 1996 (additional reading)

3. N.Kasabov, Evolving connectionist systems, Springer 2003 and 2007 (additional reading)

4. Kasabov, N. (ed) (2014) The Springer Handbook of Bio- and Neuroinformatics, Springer. (additional reading)

5. NeuCube: http://www.kedri.aut.ac.nz/neucube/

6. NeuCom: https://theneucom.com

7. KEDRI R&D Systems available from: http://www.kedri.aut.ac.nz
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5. Questions, exercises, assignments and project work

1. What are Convolutional Neural networks (CNN)?

2. What are Deep Neural Networks (DNN)?

3. What are the advantages and the problems with DNN?

4. What is reservoir computing and what are LSM?

5. What are hybrid systems?

6. How do you develop a NN application in NeuCom? 
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