

Evolving COnnectionist Systems (ECOS) - Principles

- ECOS are neural networks that learn from data and interact with their environment to evolve their structure, functionality, and internal knowledge representation.
- The learning process can be supervised, unsupervised, active, sleep/dream, forgetting/pruning, fuzzy rule insertion- and extraction-related, and so on.
- With little or no prior knowledge, "one-pass" training is used to quickly learn from large amounts of data.
- New input variables that are relevant to the task are allowed; and new outputs (classes), connections, and neurons are created/evolved.
- System self-evaluation in terms of behavior, global error and success, and knowledge representation.
- Applied to the development of various computational intelligence models, including evolving simple connectionist systems, evolving spiking neural networks, evolving rule-based and fuzzy systems, evolving kernel-based systems, evolving quantum-inspired systems, and many other integrated hybrid models.

🤣 NeuCom © Plus Visualisation Data Analysis Modelling Discovery Help File NeuCom **A Neuro-Computing Environment for Evolving Intelligence** Action Feature Part Selection Environmer (Critique) Inputs www.theneucom.com tion Mod Results New Inputs NNM Rule extraction View & Modify Rename Extract Save Transpose Split Ratio Split ۲ 20 Delete All Normalise Join Eigen Transform Delete

Visualisation

Save

Delete

Full course, Dalian University of Technology (DUT), 2023 **Advanced Artificial Intelligence Technologies and Applications**

Fri Apr 7, 2023

Evolving Classification Function

ECF Classification Model

IRIS Flower Classification Model Evolving Classification Function [ECF]

- * The Iris flower dataset is widely used in machine learning and pattern recognition. It includes measurements of the sepal length/width and petal length/width of 150 samples of iris flowers, 50 samples from each of three different species: Iris setosa, Iris versicolor, and Iris virginica.
- * Each sample in the dataset is labeled with the iris flower species, making this a supervised learning problem. The objective is to design an MLP model that can predict the species of an iris flower given its measurements.

ECF Classification Model: The Dataset

- Iris time series dataset consists of 150 iris plants.
- Four Features: sepal length/width, petal length/width.
- * Three Classes: Setosa, Versicolor, and Virginica.
- Iris dataset modelling for classification.
- * Modelling method: ECF.
- * Iris dataset **split** 20/80 training-learning ratio.

ECF Classification Model: Data Loading

ECF Classification Model: Input and Visualisation

🐠 Figure	No. 1: Neuco	m-Array Viewer, Left	Iris.txt	jht	-	×	NeuCom - 2D Visualization File Function Help	
							Available Datasets Iris.txt 💽 Start	
		1	2	3	4	5 🔺	Filename: Iris.txt #Samples: 150 #Variables: 5	
	1	5.1	3.5	1.4	0.2	1		
	2	4.9	3	1.4	0.2	1	⁸ Setosa Versicolor Virainica	
	3	4.7	3.2	1.3	0.2	1	Setesti versicolor riginica	
	4	4.6	3.1	1.5	0.2	1	7 - M.	
	5	5	3.6	1.4	0.2	1		
	6	5.4	3.9	1.7	0.4	1		sepal_length
	7	4.6	3.4	1.4	0.3	1		
	8	5	3.4	1.5	0.2	1	B SEALA MARAMANA WALLAND A PUT WALLAND WALLAND A PUT WA	sepal_width
Up	9	4.4	2.9	1.4	0.2	1		
1	10	4.9	3.1	1.5	0.1	1		petal_length
Down	11	5.4	3.7	1.5	0.2	1		
	12	4.8	3.4	1.6	0.2	1		petal_width
	13	4.8	3	1.4	0.1	1		
	14	4.3	3	1.1	0.1	1		
	15	5.8	4	1.2	0.2	1		
	16	5.7	4.4	1.5	0.4	1		
	17	5.4	3.9	1.3	0.4	1		
	18	5.1	3.5	1.4	0.3	1	h m h	
	19	5.7	3.8	1.7	0.3	1		
	20	5.1	3.8	1.5	0.3	1 🗸	20 40 60 80 100 120 140	
Delete	Save	Save As Sor	By Var Shuf	fle Close			X: Sample	

Fri Apr 7, 2023

ECF Classification Model: Parameters, Modelling and Analysis

		Parameters:
Neucom - ECF	– o x	MaxField If the distance between a new sample (to be used for training) and every cluster centre is
e Help		greater than this value, a new RN is created.
Available datasets Iris Random 20%	5 Samples 30	MinField Initial radius of a newly created RN (rule nodes).
		MofN Number of nodes which are referenced to determine the class of the current sample.
	Train	MF Number of Membership Functions (MFs) which are used to fuzzify the input data.
Actual	,	Epochs Number of learning iterations used by the network.
3 Desired	Parameters	Results:
	Min Field 0.01	Classes Number of classes which the network distinguishes between.
2.5-	MofN 3	Num Rn Number of rule nodes in the networks structure.
ta de la constante de la consta	MF 2	Correct Number of samples which have been successfully classified by the network.
	Epochs 4	Incorrect Listing only samples which have been incorrectly classified.
	Results	Options:
	Classes 3	Start : Begin which ever is currently displayed in the mode menu (training, testing, etc.)
	Num Rn 8	Rules: Extract and display the rules which have been created by the network
	Correct 30 (100%)	Reset : Delete the current network from memory.
	Incorrect	
	Sample No. 🗨	Graphical presentation:
	Predicted	Output vs predicted : plots network output vs desired output as dictated by the data set.
0 5 10 15 20 25 30	Actual	%Accuracy/class: Displays in a bar chart the percentage of each class which have been correctly classified.
Sample	Status	No of rule nodes: Number of rule nodes dedicated to each class by the model.
	Network Trained	View data: Graphical representation of the data (circles) and the rule node centres (squares).
Start Hules Heset Uutput vs Predicted		RN radius: Displays radii of each rule node. The rule nodes are grouped together according to their class.

Confusion table: Displays in compact format the correct and incorrect classifications made by the system.

ECF Classification Model: Parameters, Modelling and Analysis

Fri Apr 7, 2023

ECF Classification Model: Rules extraction

Rule 1: if X1 is (1:0.76) X2 is (2:0.60) X3 is (1:0.87)	Rule 7: if X1 is (2: 0.57) X2 is (1: 0.80) X3 is (2: 0.66)	Rule 13: if X1 is (2: 0.57) X2 is (1: 0.70) X3 is (2: 0.66)	Rule 19: if X1 is (2: 0.95) X2 is (1: 0.75) X3 is (2: 0.99)
X4 is (1:0.84)	X4 is (2: 0.56)	X4 is (2: 0.68)	X4 is (2: 0.88)
then Class is [1]	then Class is [2]	then Class is [3]	then Class is [3]
Radius = 0.253164 , 208 in Cluster	Radius = 0.070157 , 4 in Cluster	Radius = 0.040904 , 12 in Cluster	Radius = 0.259563 , 37 in Cluster
Rule 2:	Rule 8:	Rule 14:	Rule 20:
	IT X1 is (1:0.67.)	IT	
X1 IS (1:0.93)	X1 IS (1: 0.62)	X1 IS (1: 0.51)	X1 IS (2: 0.57)
X2 is (1:0.90)	X2 is (1: 0.55)	X2 IS (1: 0.95)	X2 IS (1: 0.65)
X3 IS (1:0.94)	X3 IS (2: 0.52)	X3 IS (2: 0.67)	X3 IS (2: 0.69)
X4 IS (1: 0.92)	X4 IS (1: 0.32)	X4 IS (2: 0.56)	X4 IS (2: 0.56)
then Class is [1]	then Class is [2]	then Class is [3]	then Class is [3]
Radius = 0.010000 , 5 in cluster	Radius = 0.126069 , 52 in Cluster	Radius = 0.010000 , 5 in Cluster	Radius = 0.010000 , 3 in Cluster
Rule 3:	Rule 9:	Rule 15:	Rule 21:
X1 is (2:0.51)	¥1 is (2:0.62)	X1 is (2:0.95)	X1 is (2:0.51)
X2 is (1:0.55)	X2 is (1:0.65)	Y2 is (2: 0.85)	Y2 is (1:0.75)
X3 is (2:0.61)	X3 is (2:0.61)	X3 is (2:0.95)	X3 is (2:077)
X4 is (2:0.52)	X4 is (2:0.56)	X4 is (2: 0.84)	X4 is (2:0.52)
then Class is [2]	then Class is [2]	then Class is [3]	then Classis [3]
Radius = 0.072538 56 in Cluster	Radius = 0.010000 4 in Cluster	Radius = 0.281771 63 in Cluster	Radius = 0.010000 3 in Cluster
Rule 4:	Rule 10:	Rule 16:	
if	if	if	
X1 is (1:0.76)	X1 is (2:0.54)	X1 is (1:0.62)	
X2 is (1:0.80)	X2 is (1:0.95)	X2 is (1:0.65)	
X3 is (1:0.66)	X3 is (2:0.59)	X3 is (2: 0.66)	
X4 is (1:0.60)	X4 is (2:0.56)	X4 is (2:0.76)	
then Class is [2]	then Class is [2]	then Class is [3]	
Radius = 0.172745 , 54 in Cluster	Radius = 0.048663 , 3 in Cluster	Radius = 0.099973 , 35 in Cluster	
Rule 5:	Rule 11:	Rule 17:	
if	if	if	
X1 is (2:0.76)	X1 is (1:0.51)	X1 is (2: 0.60)	
X2 is (2:0.55)	X2 is (2:0.65)	X2 is (1:0.65)	
X3 is (2: 0.62)	X3 is (2:0.59)	X3 is (2: 0.77)	
X4 is (2:0.52)	X4 is (2: 0.60)	X4 is (2: 0.80)	
then Class is [2]	then Class is [2]	then Class is [3]	
Radius = 0.107222 , 24 in Cluster	Radius = 0.010000 , 3 in Cluster	Radius = 0.105996 , 47 in Cluster	
Rule 6:	Rule 12:	Rule 18:	
if	if	if	
X1 is (1:0.54)	X1 is (2:0.57)	X1 is (1:0.82)	
X2 is (2:0.55)	X2 is (1:0.90)	X2 is (1: 0.80)	
X3 is (2: 0.64)	X3 is (2: 0.57)	X3 is (2: 0.59)	
X4 is (2: 0.68)	X4 is (1:0.52)	X4 is (2: 0.64)	
then Class is [2]	then Class is [2]	then Class is [3]	
Radius = 0.010000 , 4 in Cluster	Radius = 0.010000 , 4 in Cluster	Radius = 0.010000 , 4 in Cluster	

GasFurnace Prediction Model

* The gas furnace dataset for time series analysis contains the gas rate and the percentage CO₂ in the gas.

- Gas furnace time series dataset consists of **292 observations.**
- **Two input features:** Methane and CO₂
- *** One output feature:** $CO_2(t+1) = f$ (Methane(t-4), $CO_2(t)$, ε)
- * dataset modelling for Prediction.
- Modelling method: MLP.
- * Gas furnace dataset **split** 30/70 training-learning ratio.

GasFurnace Prediction Model: Data Loading

Start

GasFurnace Prediction Model: Input and Visualization

	Left	t 1 Rig	ht		e Function Help	
					Available Datasets Gasfurnace.txt	-
		1	2	3	Filename: Gasfurnace.txt #Samples: 292	#Variables:
	1	-0.109	53.5	53.4		
	2	0	53.4	53.1	50 - 🔨 🔿	-
	3	0.178	53.1	52.7		$\sim \sim$
	4	0.339	52.7	52.4		
	5	0.373	52.4	52.2		
	6	0.441	52.2	52	- V*	
	7	0.461	52	52	10	
	8	0.348	52	52.4	2 40	
lp	9	0.127	52.4	53		
1	10	-0.18	53	54	□ 30 -	
own	11	-0.588	54	54.9	ap	
	12	-1.055	54.9	56	A a	
	13	-1.421	56	56.8	≻ 20 -	
	14	-1.52	56.8	56.8		
	15	-1.302	56.8	56.4	10	
	16	-0.814	56.4	55.7	10 -	
	17	-0.475	55.7	55		
	18	-0.193	55	54.3	on many	
	19	0.088	54.3	53.2		\sim
	20	0.435	53.2	52.3	50 100 150 200	

Dynamic Evolving Neuro-Fuzzy Inference System

DENFIS Prediction Model

Dynamic Evolving Neuro-Fuzzy Inference System <u>DENFIS Prediction Mode</u>l: Parameters, Modelling and Analysis

DENFIS Prediction Model: Parameters, Modelling and Analysis

DENFIS Prediction Model: Rules extraction

Rule 1:	Rule 8:	Rule 15:
if X1 is GaussianMF(0.50 0.39)	if X1 is Gaussian MF(0.50 0.95)	if X1 is GaussianMF(0.50 0.56)
X2 is GaussianMF(0.50 0.61)	X2 is GaussianMF(0.50 0.06)	X2 is GaussianMF(0.50 0.69)
then Y = 1.54 - 0.56 * X1 + 0.49 * X2	then $Y = 1.51 - 0.51 * X1 + 0.34 * X2$	then Y = 1.34 - 0.42 * X1 + 0.72 * X2
Bula 2		Dula 16
Kule 2:	Rule 9:	Rule 16:
IT XI IS Gaussianivir(0.50 0.50)	IT XI IS Gaussian MF(0.50 0.78)	IT XI IS GaussianiViF(0.50 -0.03)
X2 IS GaussianMF(0.50 0.50)	X2 is GaussianMF(0.50 0.07)	X2 is GaussianMF(0.50 0.81)
then Y = 1.53 - 0.60 * X1 + 0.52 * X2	then Y = 1.49 - 0.49 * X1 + 0.42 * X2	then $Y = 1.53 - 0.51 * X1 + 0.47 * X2$
Rule 3:	Rule 10:	
if X1 is GaussianMF(0.50 0.21)	if X1 is Gaussian MF(0.50 0.64)	if X1 is GaussianMF(0.50 -0.11)
X2 is GaussianMF(0.50 0.71)	X2 is GaussianMF(0.50 0.20)	X2 is GaussianMF(0.50 1.03)
then Y = 1.44 - 0.40 * X1 + 0.57 * X2	then Y = 1.52 - 0.52 * X1 + 0.36 * X2	then Y = 1.50 - 0.51 * X1 + 0.51 * X2
Rule 4:	Bule 11:	
if X1 is GaussianMF(0.50 0.12)	if X1 is Gaussian MF(0.50 0.43)	if X1 is GaussianMF(0.50 0.06)
X2 is GaussianMF(0.50 0.84)	X2 is Gaussian MF(0.50 0.32)	X2 is GaussianMF(0.50 1.07)
then Y = 1.48 - 0.45 * X1 + 0.52 * X2	then Y = 1.49 - 0.56 * X1 + 0.54 * X2	then Y = $1.42 - 0.44 * X1 + 0.60 * X2$
Rule 5:		
if X1 is GaussianMF(0.50 0.60)	if X1 is Gaussian MF(0.50 0.36)	if X1 is GaussianMF(0.50 0.20)
X2 is GaussianMF(0.50 0.39)	X2 is Gaussian MF(0.50 0.45)	X2 is GaussianMF(0.50 0.95)
then Y = 1.47 - 0.53 * X1 + 0.59 * X2	then Y = 1.39 - 0.39 * X1 + 0.63 * X2	then Y = 1.32 - 0.28 * X1 + 0.69 * X2
Rule 6:	 Rule 13:	
if X1 is GaussianMF(0.50 0.75)	if X1 is Gaussian MF(0.50 0.20)	if X1 is GaussianMF(0.50 0.45)
X2 is GaussianMF(0.50 0.30)	X2 is Gaussian MF(0.50 0.56)	X2 is GaussianMF(0.49 0.78)
then Y = 1.46 - 0.47 * X1 + 0.49 * X2	then Y = 1.39 - 0.46 * X1 + 0.65 * X2	then Y = $1.31 - 0.40 * X1 + 0.75 * X2$
Bule 7:	 Bule 14:	
if X1 is GaussianME(0.50, 0.92)	if X1 is Gaussian ME(0.50, 0.30)	if X1 is GaussianME(0.50, 0.37)
X_2 is GaussianMF(0.50 0.52)	X_2 is Gaussian MF(0.50 0.50)	X_2 is Gaussian MF(0.50 0.57)
then Y = $1.51 - 0.50 * X1 + 0.33 * X2$	then Y = $1.18 - 0.34 * X1 + 0.88 * X2$	then $Y = 1.05 - 0.22 * X1 + 1.00 * X2$

Evolving Fuzzy Neural Networks

EFuNN Prediction Model

Evolving Fuzzy Neural Networks EFuNN Prediction Model: Parameters, Modelling and Analysis

Graphical presentation:

Output and Predicted:	The green line indicates the output produced by the network and
	the dotted line indicates the desired output.
ABSE Error:	This shows the Absolute Error for each sample.
Show Data:	Plots the data and rule nodes where appropriate.

Parameters:

Sensitivity Threshold: Maximum cluster radius (rule nodes) Error Threshold: Level of error tolerance for the output Number of Membership Function: No. of membership function used in fuzzy inference system. Learning Rate for W1: Learning Rate for the weights of first layer Learning Rate for W2: Learning Rate for the weights of second layer Pruning: Whether to prune old nodes Node Age: If Pruning is enabled, then old nodes should be removed Aggregation: Whether to allow similar rule nodes to be merged. Max Field: Maximum radius for clusters in self-tuning mode. (only applied in self-tuning mode) Number of Activity Rule Nodes: Number of rule nodes used to derive the output EFuNN Version: Standard or Self-tuning EFuNN Recurrent Connection: Whether to allow recurrent connections

<u>Results</u>:

- NumRn: Number of Rule Nodes (RNs) in the network.
- **NDEI**: Non-Dimensional Error Index, defined as RMSE / StDev of the target series.
- **RMSE**: Root Mean Squared Error.
- **Incorrect** Listing samples which have been incorrectly predicted.

EFuNN Prediction Model: Parameters, Modelling and Analysis

EFuNN Prediction Model: Rules extraction

Data points are denoted as circles

Veucom - EFuNN for prediction

& rule node centres by red squares • • ×

Rule 1:

[Var 1] --> (MF 1) @ 0.220 & (MF 2) @ 0.780 & (MF 3) @ 0.000 & [Var 2] --> (MF 1) @ 0.000 & (MF 2) @ 0.806 & (MF 3) @ 0.194 & then Output for (MF 1) @ 0.000 Output for (MF 2) @ 0.782 Output for (MF 3) @ 0.105

Rule 2:

if

....

....

....

[Var 1] --> (MF 1) @ 0.094 & (MF 2) @ 0.906 & (MF 3) @ 0.000 & [Var 2] --> (MF 1) @ 0.000 & (MF 2) @ 0.835 & (MF 3) @ 0.165 & then Output for (MF 1) @ 0.000 Output for (MF 2) @ 0.916

Rule 162:

[Var 1] --> (MF 1) @ 0.000 & (MF 2) @ 0.954 & (MF 3) @ 0.046 & [Var 2] --> (MF 1) @ 0.000 & (MF 2) @ 0.481 & (MF 3) @ 0.519 & then Output for (MF 1) @ 0.000 Output for (MF 2) @ 0.518 Output for (MF 3) @ 0.482

References:

- 1. N.Kasabov, *Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence*, Springer, 2019.
- 2. N.Kasabov, *Evolving connectionist systems: Methods and Applications in Bioinformatics, Brain study and intelligent machines*, Springer Verlag, London, New York, Heidelberg, 2002.
- 3. N.Kasabov, Foundations of neural networks, fuzzy systems and knowledge engineering, MIT Press, CA, MA, 1996.
- 4. Q. Song and N. Kasabov, *NFI- A neuro-fuzzy inference method for transductive reasoning*, IEEE Tr. Fuzzy Systems, in print, 2004.
- 5. R. Fisher, *The use of Multiple Measurements in Taxonomic Problems*, Annals Eugenics 7, 1936.

Springer Sente de Blas and Henressterns 7 Nikola K. Kasabov

Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence

