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PART I. Time-Space and AI  

 

Chapter 1  

Evolving processes in Time-Space. Deep learning and deep knowledge 

representation in time-space. Brain-inspired AI.  

 

This chapter presents challenges to information sciences when dealing with complex evolving 

processes in time-space. The emphasis here is on processes/systems that 

evolve/develop/unfold/change in time-space and what characterises them. To model such processes, 

to extract deep knowledge that drives them and to trace how they change over time, are among the 

main objectives of the brain-like approach that we take in this book by using SNN. And before 

going to SNN in the next chapters, we introduce how evolving processes can be represented as data, 

information and knowledge in Artificial Intelligence (AI), and more specifically, what is deep 

knowledge that we will target to achieve through deep learning in SNN.       

     This chapter consists of the following sections: 

1.1. Evolving processes in time-space  

1.2. Characteristics of evolving processes: Frequency, entropy, energy and information. 

1.3. Light and sound.  

1.4. Evolving processes in Time-Space and Direction. 

1.5. From data and information to knowledge 

1.6. Deep learning and deep knowledge representation in time-space.     

1.7. Statistical, computational modelling of evolving processes 

1.8. Brain-inspired AI (BI-AI)     

1.9. Chapter summary and further readings for deeper knowledge  

 

1.1. Evolving processes in time-space 

 

     Time is defined in the Oxford Dictionary as “The indefinite continued progress of existence, 

events, etc., in past, present and future regarded as a whole....”. Time has been studied for many 

years by the most prolific scientists and cosmologies [33, 37].  

      Space is defined in the Oxford Dictionary as “A continuous, unlimited area of expanse which 

may or may not contain objects...”.   

      Science aims at understanding Nature and the humanity. Processes in Nature are evolving in 

both space and time (Fig.1). To understand them humans create models, initially only mental 



models, as at the time of Aristotle (4c BC) and now mathematical and computational models to 

extract information and knowledge, and more specifically deep knowledge as defined here.   

 

1.1.1. What are evolving processes? 

     We call evolving processes or evolving systems those that change, develop, unfold in time. Most 

evolving processes evolve both in time and in space.  Evolving spatio-temporal processes are 

characterised by sometimes complex interaction between space and time components in a 

continuous manner. This interaction may change over time. Such processes may also interact with 

other processes in the environment. It may not be possible to determine in advance the course of 

interaction, unless we discover the important features, the spatio-temporal patterns and rules that 

drive such processes and their evolution in time.  

     Evolving spatio-temporal processes are difficult to model because some of their evolving rules 

(laws) may not be known a priori, they may dynamically change due to unexpected perturbations, 

and therefore they may not be strictly predictable in a longer term. Thus, modelling of such 

processes is a challenging task with a lot of practical applications in life sciences and engineering. 

    When a real process is evolving, a modelling system needs to be able to trace the dynamics of the 

process and to adapt to changes in the process. For example, a speech recognition system has to be 

able to adapt to various new accents, and to learn new languages incrementally. A system that 

models cognitive tasks of the human brain, needs to be adaptive, as all cognitive processes are 

evolving by nature. (We never stop learning!) In bioinformatics, a gene expression modelling 

system has to be able to adapt to new information that would define how a gene could become 

inhibited by another gene, the latter being triggered by a third gene, etc. There is an enormous 

number of tasks from life sciences where the processes evolve and change over time.  

     It would not be an overstatement to say that everything in nature evolves in space and time. But 

what are the rules, the laws that drive these processes, and how these rules change over time, how 

do they evolve? If we knew these rules, we could create a computational model that can evolve in a 

similar manner as the real evolving process, and use this model to make predictions and to better 

understand the processes. But if we do not know these rules, we can still try to uncover them from 

the data collected from these processes using machine learning.    

     The term “evolving” is used here in a broader sense than the term “evolutionary”. The latter is 

related to a population of individual systems traced over generations [1-3], while the former, as it is 

used in this book, is mainly concerned with the development of the structure and functionality of an 

individual system in space and/or time during its lifetime [4]. An evolutionary 

(population/generation) optimisation of the parameters of this system can be applied as well. 

 



 

Figure 1. All processes in Nature are evolving in Time-Space, from the emergence of the universe 

to life and the human brain (after [23]) 

 

1.1.2. Evolving processes in living organisms  

 

The most obvious example of an evolving process is life, defined in the Concise Oxford English 

Dictionary (1983) as “a state of functional activity and continual change peculiar to organized 

matter, and especially to the portion of it constituting an animal or plant before death, animate 

existence, being alive”. Continual change in space and time, along with certain stability, is what 

characterizes life. Modelling living systems requires that the continuous changes are represented in 

the model, i.e. the model adapts in a life-long mode and at the same time preserves features and 

principles that are characteristic to the process. The “stability–plasticity” dilemma is a well-known 

principle of life that is also widely used in connectionist computational models [5].  

     Perhaps, the most complex information system evolved so far is the human brain. Many 

interrelated evolving processes are observed at different “ levels” of brain functionality (Fig.2).  

 

 

 

 

 

 

 

 

Figure 2. Many interrelated evolving processes are observed at different “levels” of brain 

functionality (after [13]) 

       

     At the quantum level, particles are in a complex evolving state in space and time, being at 

several locations at the same time, which is defined by probabilities. General evolving rules are 

defined by several principles, such as entanglement, superposition, etc.  [34, 36].   

6.  Evolutionary (population/generation) processes  

__________________________________________________ 

5.   Brain cognitive processes   

 _________________________________________________ 

4.  System information processing (e.g. neural ensemble)  

___________  _____________________________________ 

3.   Information processing in a cell (neuron)  

_________________________________________________ 

2  Molecular information processing (genes, proteins) 

_________________________________________________       

1.    Quantum information processing 



    At a molecular level, RNA and protein molecules, for example, evolve and interact in a 

continuous way based on the DNA information and on the environment. The central dogma of 

molecular biology constitutes a general evolving rule, but there are specific rules for different 

species and individuals. Different spatio-temporal folding and unfolding of proteins in a 3D space 

define different functions cells in the same organism – Fig. 3 [35, 36] (for details see Chapter 15). 

. 

Figure 3. Evolving processes at a molecular level: Different spatio-temporal folding and unfolding 

of proteins in a 3D space define different functions of cells in the same organism (after [12]) 

 

     At the cellular level (e.g. a neuronal cell) all the metabolic processes, the cell growing, cell 

division etc., are evolving processes in space and time. At the level of cell ensembles, or at a 

biological neural network level, an ensemble of cells (neuros) operates in a concert, defining the 

function of the ensemble or the network through learning, for instance - perception of sound, 

perception of an image or learning languages. An example of a general evolving rule is the Hebbian 

learning rule [6] where neurons create connections between them in space when they are activated 

in time [36].    

     In the human brain, complex dynamic interactions between groups of neurons can be observed 

when certain cognitive functions are performed, e.g. speech and language learning, visual pattern 

recognition, reasoning, and decision making [36]. When a person is performing a task brain 

activities are observed in different parts of the brain over time – Fig.4 (see Chapter 3 for details). 

 

Figure 4. When a person is performing a task brain activities are observed in different spatially 

located parts of the brain at different times (after [23]). 

     



At  the  level  of  population  of  individuals,  species  evolve  through  evolution A biological 

system evolves its structure and functionality through both lifelong learning of an individual and the 

evolution of populations of many such individuals [2, 3]. In other words, an individual is a result of 

the evolution of many generations of populations, as well as a result of its own developmental 

lifelong learning processes. The Mendelian and Darwinian rules of evolution have inspired the 

creation of computational modelling techniques called evolutionary computation (EC) [3, 7] (see 

Chapter 7 for details).   

     Interaction in Time-Space is what makes a living organism a complex one, and that is also a 

challenge for computational modelling. For example, there are complex interactions between genes 

in a genome, and between proteins and DNA. There are complex interactions between the genes 

and the functioning of each neuron, a neural network, and the whole brain. Abnormalities in some 

of these interactions are known to have caused brain diseases and many of them are unknown at 

present. An example of interactions between genes and neuronal functions is the observed 

dependence between long-term potentiation (learning) in the synapses and the expression of the 

immediate early genes and their corresponding proteins such as Zif/268 [8]. Genetic reasons for 

several brain diseases have been already discovered, where some genes are expressed at a later 

stage of live through interactions with other genes in the genome (see Chapters 16 and 18) .  

      

1.1.3. Spatio-temporal and spectro-temporal evolving processes   

 

The physical interaction between parts of the earth is measured as spatio-temporal seismic data 

(Fig.5) but what are these deep patterns of interaction that would trigger an earthquake?  (see 

Chapter 19 for details). 

         

   

(a)                                       (b)                                        (c)    

Figure 5. Geophysical processes are both spatio-temporal and spectro-temporal: (a) Spatially 

located seismic sites in New Zealand; (b) Temporal seismic activities at four selected seismic sites 



(spatially located) around Christchurch area manifest different frequency (spectral) characteristics; 

(c) Sea level at different harbours of New Zealand over time demonstrate both spatial and spectral 

characteristics (from: http://www.geonet.co.nz). 

 

 A sound signal represents a spectro-temporal evolving process in time, e.g. music as shown in 

Fig.6. as a wave form in time (see Chapters 12,13).   

 

Several sources of signals located at different locations, represent a spatio/spectro-temporal process.   

 

 

 

Figure. 6. A wave form of a segment from Mozart’s music, represented as intensity of the sound 

over time, contains spectro-temporal information.   

 

The processes of buying/selling shares on the stock market are spatio-temporal, sometimes 

presented as only spectro- temporal, i.e. the change of the stock prices in time.  

 

To properly model and understand evolving processes, it is important to first understand their 

characteristics as discussed in the next section.  

 

1.2. Characteristics of evolving processes: Frequency, energy, probability, 

entropy and information 

 

     Evolving processes are characterised by common characteristics, the most important ones being  

frequency, entropy, energy and  information as explained below. 

     Frequency: Frequency, is defined as the number of a signal/event changes over a period of time  

(seconds, minutes, centuries, etc.). Some processes have stable frequencies (they are periodic), but 

other - change their frequencies over time. Different processes are characterised by different 

frequencies, defined by their physical parameters. Usually, a process is characterised by a spectrum 

of frequencies. For example, different frequency spectrums are observed as brain activities (e.g. 

http://www.geonet.co.nz/


alpha waves), speech signals, image and video data, seismic processes, music,  quantum processes, 

etc.        

     Frequency reflects on the changes in the signal (the data) in time. Evolving processes can 

manifest different behaviour, depending on the frequency of their changes: 

   - Random:  there is no rule that governs changes of the process in time and the process is not 

predictable; 

   - Chaotic:  the process is predictable but only in a short time ahead, as the changes of the process 

at a time moment depends on the process changes at previous time moments via a non-linear 

function.  

    - Quasy-periodic: the process is manifesting similarity of its changes over time, but slightly 

modified each time.    

    - Periodic: the process repeats same patterns of changes over time and is fully predictable (there 

are fixed rules that govern the process and the rules do not change over time). 

     Many complex processes in engineering, social sciences, physics, mathematics, economics and 

other sciences are evolving by nature and can be analysed using the above classification. Some 

dynamic time series in nature manifest chaotic behaviour, i.e. there are some vague patterns of 

repetition over time, and the time series are approximately predictable in the near future, but not in 

the long run [9 - 12]. Chaotic processes are usually described by mathematical equations that use 

some parameters to evaluate the next state of the process from its previous states. Simple formulae 

may describe a very complicated behaviour over time: e.g. a formula that describes fish population 

growth F(t + 1) is based on the current fish population F(t) and a parameter g [9]: 

                                           F(t + 1)= 4gF(t)(1 – F(t))                                   (1) 

When g > 0.89, the function becomes chaotic.  

     A chaotic  process  is defined by evolving/changing rules, so that the process lies  on  the  

continuum  of  “orderness”  somewhere  between random processes (not predictable at all) and 

quasi-periodic processes (predictable in a longer time-frame, but only to a certain degree). 

Modelling a chaotic process in reality, especially if the process changes its rules over time, is a task 

for an adaptive system that captures the changes in the process in time, e.g. the value for the 

parameter g from the formula above.  

     All problems from engineering, economics and social sciences that are characterised by evolving 

processes require continuously adapting models to model them. A speech or sound recognition 

system (Chapters 12,13), an image recognition system (Chapters 12,13), a multimodal information 

processing system, a stock prediction system, an intelligent robot, a system that predicts the 

emergence of insects based on climate (Chapter 19), etc. should always adjust its structure and 

functionality for a better performance over time. This book offers one approach to achieving this 

using spiking neural networks (SNN).    



    Everything is evolving, living organisms for sure, but what are the evolving rules, the laws that 

govern these processes? Are there any common evolving rules for every material item and for every 

living organism, along with their specific evolving rules? And what are the specific rules? Do these 

rules change over time, i.e. do they evolve as well?  These are questions that we will address in this 

book to certain degree, as the process of addressing these issues is also evolving, with our improved 

understanding of both the processes and the methods that we can use to deal with them.    

     An evolving process, characterised by its evolving, governing rules, manifests itself in a certain 

way and produces data that in many cases, can be measured. Through analysis of this data, one can 

extract patterns of relationship, rules that describe the processes at a certain time, but do they 

describe the evolving process in the future?   

     Here we will introduce some of the main characteristics of evolving processes, used to model 

and assess them in the other chapters of the book.   

     Energy. 

Energy is a major characteristic of any object and organism. The Albert Einstein’s most celebrated 

energy formula defines energy E as depending on the mass of the object m and the speed of light c: 

E=m. c2                                                                      (2) 

The speed of light is used as a constant. It is appr. 300,000 km/sec. Some characteristics of light are 

important to note as they are used in some of the methods in this book and discussed in the next 

section. 

    Probability, entropy and information 

   Evolving processes generate data, that can be measured and then used to extract information and 

knowledge. Having data measuring an evolving process, the question is how do we measure the 

information contained in the data? There are several ways to define and to measure information 

depending on the processes.  

      One way is to use a measure of changes in a process called entropy, calculated with the use of 

measure of the uncertainties in these changes called probability, as explained below.   

     The formal theory of probability relies on the following three axioms, where p(E) is the 

probability of an event E to happen and p(¬E) is the probability of an event not to happen. E1, 

E2,…,Ek is a set of mutually exclusive events that form an universe U:  

 

Axiom 1.  0 <= p(E) <= 1 

Axiom 2.  p(Ei)=1, E1E2...Ek=U, U- problem space 

Corollary: p(E) + p(¬E) =1  

Axiom 3.  p(E1  E2)=p(E1)+p(E2), where E1 and E2 are mutually exclusive events. 

 

Probabilities are defined as:  



• Theoretical – some rules are used to evaluate a probability of an event. 

• Experimental – probabilities are learned from data and experiments, e.g. throw dice 1000 

times and measure how many times the event “getting the number 6” has happened. 

• Subjective – probabilities are based on common sense human knowledge, such as defining 

that the probability of getting number 6” after throwing dice is 1/6th , without really 

throwing it at all.   

     A random variable x is characterized at any moment of time by its uncertainty in terms of what 

value this variable will take in the next moment – its entropy. A measure of uncertainty h(xi) can be 

associated with each random value xi of a random variable x, and the total uncertainty H(x), called 

entropy, measures our lack of knowledge, the seeming disorder in the space of the variable x: 

H(X) =  i=1,…,n  pi. h(xi),                                                                            (3) 

Where: pi is the probability of the variable x taking the value of xi; h(xi)= log(1/ pi). 

     The following axioms for the entropy H(x) apply: 

- monotonicity:  if  n >  n’ are number of events (values) that a variable x can take, then 

 Hn(x) > Hn’(x), so the more values x can take, the greater the entropy. 

- additivity : if x and y are independent random variables, then the joint entropy H(x,y), meaning 

H(x AND y), is equal to the sum of H(x) and H(y). 

     The following log function satisfies the above two axioms:  

h(xi)= log(1/ pi)                                                                                               (4) 

If the log has a basis of 2, the uncertainty is measured in [bits], and if it is the natural logarithm ln, 

then the uncertainty is measured in [nats].  

H(X) =  i=1,…,n (pi. h(xi)) = - c.  i=1,…,n (pi. log pi),                                     (5) 

where c is a constant.   

    Based on the Claude Shannon’s measure of uncertainty – entropy, we can calculate an overall 

probability for a successful prediction for all states of a random variable x, or the predictability of 

the variable as a whole: 

P(x) =2 –H(x)                                                                                                (6) 

                                                 

The max entropy is calculated when all n values of a random variable x are equiprobable, i.e. they 

have the same probability 1/n – a uniform probability distribution: 

      H(X) = -  i=1,…,n pi. log pi <= log n                                       (7)   

     Joint entropy between two random variables x and y (for example, an input and an output 

variable in a system) is defined by the formulas: 

H(x,y) = -  i=1,…,n  p(xi AND yj). log p(xi AND yj)    (8) 

H(x,y) <= H(x) + H(y)       (9) 



     Conditional entropy, i.e. measuring the uncertainty of a variable y (output variable) after 

observing the value of a variable x (input variable), is defined as follows:     

H(y  x) = -  i=1,…,n   p(xi , yj). log p(yj  xi)                                   (10) 

0 <=H(y  x) <= H(y)                (11) 

 

Entropy can be used as a measure of the information associated with a random variable x, its 

uncertainty, and its predictability. 

    The mutual entropy between two random variables, also simply called information, can be 

measured as follows: 

I(y; x) = H(y) – H(y   x)                       (12) 

The process of on-line information entropy evaluation is important as in a time series of events, 

after each event has happened, the entropy changes and its value needs to be re-evaluated.  

       Bayesian conditional probability is calculated using the following formula, which represents 

the conditional probability between two events C and A (Tamas Bayes, 18 century): 

p(AC)= p(CA). p(A) / p(C)                                                                   (13) 

It follows from the equations:  

p(A  C)= p(C  A)= p(AC) p(C) = p(CA) p(A)                                     (14) 

     

     Measuring information as correlation between variables      

 

Correlation coefficients represent the relationship between variables. For every variable xi (i = 1, 

2,..., d1) its correlation coefficients Corr(xi,yj) with all other variables, including output variables yj  

(j = 1, 2,..., d2), are calculated. The following is the formula to calculate the Pearson correlation 

between two variables x and y based on n values for each of them:   

Corr= SUM i ( (xi- Mx)(yi-My) ) / [(n - 1) Stdx . Stdy,]                 (15) 

where: Mx and My are the mean values of the two variables x and y, and Stdx and Stdy are their 

respective standard deviations. 

 

       Measuring the level (the value) of information carried in a variable (its importance). 

The t-test and the SNR methods evaluate how important a variable is to discriminate samples 

belonging to different classes. For a case of two class problem, a SNR ranking coefficient for a 

variable x is calculated as an absolute difference between the mean value M1x of the variable for 

class 1 and the mean M2x of this variable for class 2, divided to the sum of the respective standard 

deviations: 

SNR_x = abs (M1x- M2x) / (Std1x + Std2x)                                  (16) 

A similar formula is used for the t-test: 



Ttest_x = abs (M1x - M2x) / (Std1x2 /N1  + Std2x2 /N2 )              (17) 

where: N1 and N2 are the numbers of samples in class 1 and class 2 respectively.   

 

      Transformation of information spaces  

     A set of variables measured to carry information for an evolving process form the problem, or 

the information space.  These variables can be used to create another set of variables in a new 

information space, that retains the main information from the original problem space but potentially 

reduces the dimensionality of the space into a smaller set of variables. Two of the most common 

transformations are Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA).  

     Principal Component Analysis (PCA) 

PCA aims at finding a representation of a problem space X defined by its variables X= {x1, x2,..., 

xn} into another orthogonal space having a smaller number of dimensions defined by another set of 

variables Z= {z1, z2,..., zm}, such that every data vector x from the original space is projected into 

a vector z of the new space, so that the distance between different vectors in the original space  X is 

maximally preserved after their projection into the new space Z. 

          Linear Discriminant Analysis (LDA).        

LDA is a transformation of classification data from the original space into a new space of LDA 

coefficients that has an objective function to preserve the distance between the samples using also 

the class label to make them more distinguishable between the classes.  

 

1.3. Light and sound 

 

Two type of evolving processes known as Light and Sound are of a special importance as they, first, 

affect how we perceive the world, and second, the way we perceive them can be used as inspiration 

for brain-inspired AI that deal visual and audio information (Chapters 12,13)).      

      Light is important electromagnetic radiation that is characterised by certain frequencies and 

energy. Fig.7 shows a spectrum of electromagnetic radiations with light being part of it.  

 

https://en.wikipedia.org/wiki/Electromagnetic_radiation
https://en.wikipedia.org/wiki/File:EM_spectrum.svg


Fig. 7. The frequencies and the wavelengths of electromagnetic radiation, visible light being part of 

a small spectrum ([23])  

 

Visible light is having wavelengths in the range of 400–700 nanometres (nm), or 4.00 × 10−7 to 

7.00 × 10−7 m, between the infrared (with longer wavelengths) and the ultraviolet (with shorter 

wavelengths). This wavelength means a frequency range of roughly 430–750 terahertz (THz). The 

speed of light is used as an universal constant. It is 299,792,458 meters per second. 

The primary properties of visible light are: intensity, propagation direction, frequency or 

wavelength spectrum, polarization, energy.  

Light has the properties of both: 

-  electromagnetic waves characterised by frequencies; 

- quantum particles, called ‘photons” – that is the energy transferred from the light.    

When white light illuminates an object or a face, the reflected light at different pixels may have 

different brightness as the reflected light has different frequencies (see Fig.8). Different brightness 

means different frequencies of the wave that reaches our retinas. The brighter spots activate earliest 

the corresponding cells and they send the first signals (spikes) to the brain. This principle is used in 

some SNN models described in Chapters 4, 5 and 6 as Rank Order Coding.   

(a)

Original Image

 (b)  

Fig. 8.  Original image (a) is represented as different intensities of brightness that represent the 

different frequencies of reflecting light at these pixels – (b). And this is how it activates the retina, 

first brighter pixels are perceived as shown on the z axis of the figure (b).   

      The human brain perceives visual information as a trajectory of activation of brain areas in 

time-space (Chapter 3). The creation of computational models for visual information processing is a 

subject of computer vision.   

     In Chapters 13 and 14 of the book SNN models are developed for both visual and audio 

information processing.     

https://en.wikipedia.org/wiki/Wavelength
https://en.wikipedia.org/wiki/Nanometre
https://en.wikipedia.org/wiki/Infrared
https://en.wikipedia.org/wiki/Ultraviolet
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Terahertz_(unit)
https://en.wikipedia.org/wiki/Intensity_(physics)
https://en.wikipedia.org/wiki/Spectrum
https://en.wikipedia.org/wiki/Polarization_(waves)


    Sound is an oscillation under pressure, that is spread as waves in a medium.  Sound waves are 

characterised by:  

- Frequency, 

- Amplitude 

- Speed   

- Direction 

Sound that is perceptible by humans has frequencies from about 20 Hz to 20,000 Hz (see Fig. 9).  

 

Fig. 9. Some sound frequencies with their approximate ranges for different uses (from [23])   

In air, corresponding wavelengths of sound waves range from 17 m to 17 mm. Sometimes speed 

and direction are combined as a velocity vector, wave number and direction are combined as a wave 

vector and power of the signal at different frequencies over time is represented as spectrum (Fig. 

10). A power spectrum represents frequencies on the signal as their power in time.  Fig. 10 shows a 

spectrogram of the Mozart’s music from fig.6, representing the power of frequencies (on the y axis) 

over time (on the x axis) as spectro-temporal data.  

 

 

 

Figure 10. A spectrogram of the Mozart’s music from fig.6, representing the power of frequencies 

(on the y axis) over time (on the x axis) as spectro-temporal data.  

The way sound is perceived in the human brain is discussed in Chapter 3 and used in Chapter 14 for 

the creation of a BAI system for music recognition.    

 

 

 

 

https://en.wikipedia.org/wiki/Velocity
https://en.wikipedia.org/wiki/Vector_(geometric)
https://en.wikipedia.org/wiki/Wave_vector
https://en.wikipedia.org/wiki/Wave_vector


1.4. Evolving processes in Time-Space and Direction 

 

Many evolving processes (in addition to light and sound as discussed above) are characterised by 

direction (or orientation) in which the signals or the waves spread. Examples are the spread of brain 

signals and the spread of seismic signals as illustrated below.       

     Deep learning trajectories of time-space directed connections are created during learning and 

recall in the brain as discussed in Chapter 3.  Chapter 11 introduces a method for modelling time-

space and direction on the case study of fMRI and DTI data (see also Fig.11).  

     Fig. 11 shows orientational information from a DTI image. Left image shows an axial slice of a 

single subject’s DTI data, registered to structural and MNI standard space. The right image shows a 

close-up of the right posterior corpus callosum. Directions corresponding to each colour are as 

follows: Red - left to right or right to left; green - anterior to posterior or posterior to anterior and 

blue - superior to inferior or inferior to superior (see Chapter 11).  

 

Figure 11. Orientation information from DTI image. Left image shows an axial slice of a single 

subject’s DTI data, registered to structural and MNI standard space. The Right image shows a close-

up of the right posterior corpus callosum. Directions corresponding to each colour are as follows: 

Red - left to right or right to left; green - anterior to posterior or posterior to anterior and blue - 

superior to inferior or inferior to superior [93].  

Before an earthquake happens, tectonic pressure measured at one seismic centre, causes a pressure 

at another, etc. a chain of such reactions eventually manifested as an earthquake at a final place.  

Detecting time-space and direction of changes of seismic data may enable a better earthquake 

prediction. Fig.12 shows the map of New Zealand seismic centers and the created map of the 

direction of changes in these seismic data as edges of a graph developed in a SNN in Chapter 19 of 

the book.  Time-spike learning in SNN allows for directions of changes in the data to be learned as 

directed connections between spiking neurons, showing which event happens first (a neuron Ni 

spikes) and which one follows (a neuron Nj spikes).  

 



 

Fig.12. Before an earthquake happens, tectonic pressure measured at one seismic centre, causes a 

pressure at another, also measured there etc. as a chain reaction that eventually manifests as an 

earthquake at a final place.  Detecting the direction of changes of the seismic data may enable a 

better earthquake prediction. Left figure shows the map of New Zealand seismic centers. Right 

figures show created maps of direction of seismic changes in the corresponding centres as edges of 

graphs representing deep knowledge as a result of deep learning in Brain-inspired SNN (Chapter 

19)     

 

Spike-time learning rules, such as STDP, to learn time-space and direction of events and changes in 

the data are discussed in Chapters 4,5 and 6 and applied across several applications in other 

chapters of the book.    

     Chapter 19 discusses also the detection of radio signals in space-time and direction from objects 

in the Universe called Pulsars. It also discusses recognition of fast moving objects in time-space and 

direction.   

      

1.5. From data and information to knowledge     

     Generally speaking, data are raw entities: numbers, symbols etc., e.g., 36.  

    Information is labelled, understood, interpreted data, e.g., the temperature of the human body is 

36 ◦C.  

     Knowledge is the understanding of a human, the way we do things, interpretable information in 

different situations, general information; e.g.:  

    IF the human temperature is between 36 ◦C and 37 ◦C degrees,  

    THEN it is most likely that human body is in a healthy state.  

 



    Some basic ways to represent data, information and knowledge of evolving processes are 

presented in this section, while next section discusses ways to represent deep knowledge, both 

acquired by humans and incorporated in a computer system.   

      The ultimate goal of information processing is the creation of knowledge. The process of 

knowledge acquisition from Nature is a continuous process that will never end. This knowledge is 

then used to understand Nature, to preserve it. From data and information, to knowledge discovery  

and back. This is what science is concerned with (fig.13). As shown in Fig.13, modelling evolving 

processes requires a sequence of procedures that involve dealing with data, information and 

knowledge, e.g.:  

• Searching for data: Observe phenomena; collect data; store data;     

• Analyse data and extract information  (e.g. pre-process data, filter, select features, visualise, 

label data); 

• Create a model (learning, reasoning, validation)  

• Extract knowledge (create/extract rules; reasoning with the knowledge - deductive, 

inductive)    

• Adapt the model  (accommodate new data and knowledge)   

 

 

 

 

 

 

 

 

    

 

Figure 13. The flow from data and information to knowledge representation through computational 

modelling (after [13])  

 

Extracting knowledge through observation of evolving processes has a long history. At the 

beginning, there was a school of learning that assumed that understanding of nature and its 

knowledge representation and articulation would not change with time. Aristotle was perhaps the 

most pronounced philosopher and encyclopaedist of this school.  

     Aristoteles (384-322 BC) was a pupil of Plato and teacher of Alexander the Great.  

He is credited with the earliest introduction of formal logic. Aristoteles introduced the theory of 

deductive reasoning.  
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   Example: 

      All humans are mortal (i.e. IF human THEN mortal) 

     New fact: Socrates is a human  

     Deducted inference: Socrates is mortal                                                                                     

Aristoteles introduced epistemology, which is based on the study of particular phenomena which 

leads to the articulation of knowledge (rules, formulas) across sciences: botany, zoology, physics, 

astronomy, chemistry, meteorology, psychology, etc. [14, 15]. According to Aristotle this 

knowledge was not supposed to change.  In places, Aristotle went too far in deriving ‘general laws 

of the universe from simple observations and over-stretched the reasons and conclusions. Because 

he was perhaps the philosopher most respected by European thinkers during and after the 

Renaissance, these thinkers, along with institutions, often took Aristotle's erroneous positions, such 

inferior roles of women, which held back science and social progress for a long time.   

    Over many years after Aristotle, the logic he introduced was further developed into logic systems 

and rule based systems as a foundation of knowledge-based systems and AI. But this happened due 

to pioneers in programming analytical devices. 

      Perhaps the first one was the brilliant British mathematician Ada Lovelace (1815-1852) who is 

considered not only the first programmer, but the first person who demonstrated that an analytical 

device cannot only be used to crunch numbers, but to deal with symbols as well.  

     Based on symbolic representation several knowledge representation and reasoning models were 

developed, such as   

• Relations and implications, e.g.: A-> (implies) B. 

• Propositional  (true/false) logic, e.g.:  IF (A and B) or C THEN D. 

• Boolean logic (George Boole).  

• Predicate logic: PROLOG. 

• Probabilistic logic: e.g. Bayes formula: p(A / C)) = p (C/A) . p(A) / p( C), where p(A/C 

denotes the conditional probability for an event A to happen if event C has already 

happened.   

• Rule based systems, expert systems, e.g. MYCIN [4].  

 

All above knowledge representations could not deal well with uncertainty of events. Human 

cognitive behaviour and reasoning is not always based on exact numbers and fixed rules. In 1965 

Lotfi Zadeh (1920-2018) introduced fuzzy logic [16, 17] that represents information uncertainties 

and tolerance in a linguistically expressed rules. He introduced fuzzy rules, containing fuzzy 

propositions and fuzzy inference.  



     Fuzzy propositions can have truth values between true (1) and false (0), e.g. the proposition  

“washing time is short” is true to a degree of 0.8 if the time is 4.9 min, where Short is represented as 

a fuzzy set with its membership function – see fig.14.  

Fuzzy rules can be used to represent human knowledge and reasoning, e.g.  

                                       IF washing load is small  

                                      THEN washing time is short.  

 

 

 

 

 

 

 

 

      Figure 14. Fuzzy sets representing fuzzy terms of short, medium and long washing time, used to 

articulate and implement fuzzy rules, such as: IF Washing load is Small THEN Time of washing is Short.   

 

Fuzzy inference systems calculate exact outputs based on input data and a set of fuzzy rules. However, fuzzy 

rules need to be articulated in the first instance, they need to change, adapt, evolve through learning, to 

reflect the way human knowledge evolves. And that is what artificial neural networks (ANN) can do as 

discussed in Chapter 2. In principle, logic systems and rules, while useful, could be too rigid in some cases to 

represent the uncertainty in the natural phenomena and some cognitive behaviour. They are often difficult to 

articulate, and in principle not adaptive to change.  

We call the rules discussed above “flat rules”, as they represent only single events represented as “flat” 

vectors of features and there is no time or space of series of events defined in their relationship.    

 

1.6. Deep learning and deep knowledge representation in time-space 

 

In contrast to the “flat rules” as discussed in the previous section, deep knowledge represents a 

series of events that happen in space and time in their continuous interaction.  

     Continuous learning of time-space data, to capture dynamically changing and informative 

patterns, ‘hidden’ deep in time and space, and to predict future events, has been a fundamental 

science challenge. We call this here deep learning in time-space. Inspired by the deep learning 

capabilities of the human brain, we introduce here the concept of deep knowledge in time-space. 

This is also related to concept formation from multimodal data.  

     Deep knowledge and understanding have been previously studied intensively from different 

aspects of the problem [38-40]. In [39] deep knowledge is defined as ‘Knowledge that is concerned 

with underlying meanings and principles; integration of facts and feelings with previously acquired 
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knowledge. Fundamental knowledge with general applicability, such as the laws of physics, which 

can be used in conjunction with other deep knowledge to link evidence and conclusions’. 

     Here we define deep in time-space knowledge in both brain-inspired and computational ways 

and that is how it is used in the rest of the book.   

        Let is consider a set of events E={E1, E2,..., En}. Each event Ei is defined by:  

                                 Ei=(Fi, Si, Ti, Pi),                                                                                          (18) 

defining: a function Fi; a space Si for function activity; time Ti of the activity; probability Pi.     

      An event could be a simple change in the value of a variable, or a complex cognitive process, or 

an earthquake, etc.   

      Time can be in the past, in the present or in the future.   

      Space is where an event happens.        

     Deep knowledge is defined here as time-space relationship between events, that can be 

represented in several ways.  

       One way to represent deep knowledge is through a relationship matrix W, such that the 

elements Wi,j of this matrix represent the relationship between events Ei and Ej in both time and 

space and the intensity of their interaction: 

                    W= {Wi,j}, i=1,...,n; j=1,..,n.                                                                              (19) 

          Another way to represent deep knowledge is through deep rules as explained below.  

Events Ei and Ej for example are represented by corresponding functions Fi, Fj spatial locations Si, 

Sj, times Ti, Tj probabilities of the events to happen Pi, Pj and strength of the connection between 

the events Wi,j. All parameters of an event can be represented as crisp or as fuzzy values with 

corresponding membership functions (see Fig.14), e.g.:  

- Location is around Si; 

- Time is about Ti; 

- Probability is about Pi (see about fuzzy probabilities in  [38]); 

- Strength is around Wi,j; or strength is High;  

 

A hypothetical example of deep knowledge represented as a deep fuzzy rule is given below:      

 

IF (event E1: function F1, location around S1, time about T1, probability about P1)          (20a) 

    AND (strength W1,2,)  

     (event E2: function F2, location around S2, time about T2, probability about P2) 

     AND (strength W2,3,) 

     (event E3:  function F3, location around S3, time about T3, probability about P3) 

     AND ... 

     ....................   



     (event En : function Fn, location around Sn, time about Tn, probability about Pn) 

THEN (Task/event Q is executed)                                                                                     

 

The fuzzy rule above allows for the event/task Q to be recognised even if only partial match of new 

data is entered and the rule is applied. This is a brain-inspired principle. For example, we end up 

with crisp movements as a result of the activation of slightly different clusters of neurons at slightly 

different times in their sequence, as a reaction to crisp of fuzzy stimuli.      

 

As a partial case, no fuzzy terms will be used, but crisp ones, e.g. the following deep crisp rule: 

 

IF (event E1: function F1, location S1, time T1)                                                               (20b) 

    AND (strength W1,2,)  

     (event E2: function F2, location S2, time T2) 

     AND (strength W2,3,) 

     (event E3:  function F3, location S3, time T3) 

     AND ... 

     ....................   

     (event En : function Fn, location Sn, time Tn) 

THEN (Task/event Q is executed) 

 

Crisp rules would be a case when activities of single neurons are measured in the brain at exact 

milliseconds time.  

 

                                   (20) 

       

Deep knowledge is characterised by the following features: 

(1) It represents informative patterns of multimodal data, deep in time (theoretically unconstrained) 

and in space (when dealing with spatio-temporal data);  

(2) The knowledge is adaptable in an incremental, theoretically ‘life-long’ way;  

(3) The knowledge is not restricted by fixed structures 

(4) The knowledge is obtained in supervised-, unsupervised or semi-supervised modes 

(5) The knowledge is interpretable for a better understating of the data and the processes that 

generated it; 

(6) The knowledge can be used for early and accurate future event prediction. 

        

    Deep knowledge is what the human brain learns and manifests all the time, exemplified by: 



- Listening or/and playing musical pieces;  

- Playing a game;  

- Visual perception; 

- Predicting the movement of a predator; 

- All sorts of cognition; 

- Decision making; 

- Consciousness; 

- ...and everything else the brain does.  

 

And the deep knowledge acquired in the human brain is manifested from hundreds of events in time 

and space activity of the brain, to hundreds of thousands, depending on the chosen scale to represent 

this knowledge, e.g. it can be represented at every 100msec or every single millisecond, at every 

large brain area or at every small neuronal cluster .    

 

      Some elements of deep knowledge are manifested in computational models and systems, some 

of them presented in the book, such as: 

- Hidden Markov Models (next section);  

- Deep brain EEG and fMRI patterns representing brain perception or cognitive activities 

(Chapters 8-11); 

- Gene-regulatory networks in Bioinformatics and Neurogenetics (Chapter 17); 

- Deep personalised patterns related to individual stroke prediction (Chapter 18) 

- Deep climate patterns related to environmental events (Chapter 19); 

- Deep geological patterns related to earthquake events (Chapter 19); 

- And many other. 

 

Illustration of deep rules as a result of deep learning are given in Chapter 3 (extracted from data 

measuring brain activities) and in Chapters 6,8,10, 8, along with other chapters of the book, where 

deep rules are extracted  from a deep trained brain-inspired SNN using time-space data.   

 

1.7. Statistical, computational modelling of evolving processes  

 

Computational modelling of evolving processes aims at the development of mathematical and 

computational models that capture the essence of the dynamics of the processes and facilitate 

acquiring of  knowledge.   

 

1.7.1. Statistical methods for computational modelling  



 

Here some of the most popular methods are presented, also used in other chapters of the book for a 

comparative analysis between their performance and the performance of new methods based on 

SNN.      

   Hidden Markov Models (HMM) are techniques for modelling the temporal structure of a time 

series signal, or of a sequence of events [18]. It is a probabilistic pattern matching approach which 

models a sequence of patterns as the output of a random process. A HMM consists of an underlying 

Markov chain.  

P(q(t+1)|q(t),q(t-1),q(t-2),…..,q(t-n)) P(q(t+1)|q(t)),                                 (20) 

where q(t)  is state q sampled at a time t. 

 

     Multiple linear regression methods (MLR) 

The purpose of multiple linear regression is to establish a quantitative relationship between a group 

of p predictor variables (X) and a response, y. This relationship is useful for: 

- Understanding which predictors have the greatest effect. 

- Knowing the direction of the effect (i.e., increasing x increases/decreases y).  

- Using the model to predict future values of the response when only the predictors are 

currently known.  

 A linear model takes its common form of: 

y= X A + b                                                                                                   (21) 

where: p is the number of the predictor variables; y is an n-by-1 vector of observations; X is an n-

by-p matrix of regressors; A  is a p-by-1 vector of parameters;  b is an n-by-1 vector of random 

disturbances. The solution to the problem is a vector, A’ which estimates the unknown vector of 

parameters. 

      Support vector machines 

This is a statistical learning technique introduced by V.Vapnik [19,20] which first transforms the 

data from the original space to a higher dimensional space where data belonging to different classes 

(outputs) can be discriminated by a hyperplane defined by a set of bordering new data points called 

support vectors. This is illustrated in Fig.15.  

 

 

 

 

 

 

 

             Fig.15. SVM hyperplane 



     Evaluating the error and accuracy of the computational models 

 The least squares solution is used, so that the linear regression formula approximates the data with 

the least root mean square error (RMSE) as follows: 

RMSE= SQRT(SUMi=1,2,…,n((yi – yi’) 2 ) / n )                             (22) 

where: yi  is  the desired value from the data set corresponding to an input vector xi ;  yi’ is the value 

obtained through the regression formula for the same input vector xi and  n is the number of the 

samples (vectors ) in the data set. 

     Another error measure is also used to evaluate the performance of a regression model – a non-

dimensional error index (NDEI) – the RMSE divided to the standard deviation of the data set:. 

NDEI = RMSE / Std                                               (23) 

     A popular method to measure the accuracy of a computational model is the area under the curve 

(AUC, or also called ROC)  - Fig.16, with a val7ue of 1.0 being the best and 0.5 being the worst.   

 

 

 

 

 

 

 

 

   

Fig.16. ROC curve is used to measure the accuracy of a computational model, with 1.0 being the 

best and 0.5 being the worst. 

  

1.7.2. Global, local and transductive (“personalised”) modelling [21] 

 

Most of learning models and systems in artificial intelligence developed and implemented so far, 

are based on inductive inference methods, where a model (a function) is derived from data 

representing the problem space and this model is further applied on new data. The model is usually 

created without taking into account any information about a particular new data vector (test data). 

An error is measured to estimate how well the new data fits into the model.  

    The models are in most cases global models, covering the whole problem space. Such models are 

for example: regression functions; some ANN models, and also – some support-vector machine 

(SVM) models, depending on the kernel function they use. These models are difficult to update on 

new data without using old data, previously used to derive the models. Creating a global model 



(function) that would be valid for the whole problem space is a difficult task, and in most cases – it 

is not necessary to solve.  

     Some global models may consist of many local models, that collectively cover the whole space 

and can be adjusted incrementally on new data. The output for a new vector is calculated based on 

the activation of one or several neighbouring local models. Such systems are the evolving 

connectionist systems (ECOS), for example – EFuNN and DENFIS (Chapter 3).  

    Transductive modelling  

 In contrast to the inductive learning and inference methods, transductive inference methods 

estimate the value of a potential model (function) only in a single point of the space (the new data 

vector) utilizing additional information related to this point [19]. This approach seems to be more 

appropriate for clinical and medical applications of learning systems, where the focus is not on the 

model, but on the individual patient. Each individual data vector (e.g.: a patient in the medical area; 

a future time moment for predicting a time series; or a target day for predicting a stock index) may 

need an individual, local model that best fits the new data, rather then - a global model. In the latter 

case the new data is matched into a model without taking into account any specific information 

about this data.       

     Transductive inference is concerned with the estimation of a function in a single point of the 

space only. For every new input vector xi that needs to be processed for a prognostic task, the Ni 

nearest neighbours, which form a sub-data set Di, are derived from an existing data set D and, if 

necessary, generated from an existing model M. A new model Mi is dynamically created from these 

samples to approximate the function in the point xi. The system is then used to calculate the output 

value yi for this input vector xi.  

     A simple transductive inference method is the k-nearest neighbour method (K-NN). In the K-NN 

method, the output value yi for a new vector xi is calculated as the average of the output values of 

the k nearest samples from the data set Di. In the weighted K-NN method (WKNN) the output yi is 

calculated based on the distance of the Ni nearest neighbour samples to xi: 
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where: yj is the output value for the sample xj from Di and  wj are their weights measured as: 
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The vector d = [d1, d2, … dNi] is defined as the distances between the new input vector xi and Ni 

nearest neighbours xj , for j = 1 to Ni; max(d) and min(d) are the maximum and minimum values in 

d respectively. The weights wj have the values between min(d)/max(d) and 1; the sample with the 



minimum distance to the new input vector has the weight value of 1, and it has the value 

min(d)/max(d) in case of  maximum distance. 

     Distance is usually measured as Euclidean distance:  

 

                                                                                                                            (26) 

Distance can be also measured as Pearson correlation distance, Hamming distance, cosine distance, 

etc. [20].  

    

     WWKNN: Weighted examples, weighted variables K-NN  [21] 

In the WKNN above the calculated output for a new input vector depends not only on the number of 

its neighboring vectors and their output values (class labels), as it is in the KNN method, but on the 

distance between these vectors and the new vector which is represented as a weight vector (W). It is 

assumed that all v input variables are used and the distance is measured in a v-dimensional 

Euclidean space with all variables having the same impact on the output variable.  

      But when the variables are ranked in terms of their discriminative power of class samples over 

the whole v-dimensional space, we can see that different variables have different importance to 

separate samples from different classes, therefore – a different impact on the performance of a 

classification model. If we measure the discriminative power of the same variables for a sub-space 

(local space) of the problem space, the variables may have a different ranking.  

     Using the ranking of the variables in terms of a discriminative power within the neighborhood of 

K vectors, when calculating the output for the new input vector, is the main idea behind the 

WWKNN algorithm [21], which includes one more weight vector to weigh the importance of the 

variables. The Euclidean distance dj between a new vector xi and a neighbouring one xj is 

calculated now as: 

dj = sqr [ sum  l = 1 to v ( ci,l  (xi,l  -    xj,l ) )2 ]                                                    (27) 

where: ci,l is the coefficient weighing variable xl  for in neighbourhood of  xi . It can be calculated 

using a Signal-to-Noise Ratio (SNR) procedure that ranks each variable across all vectors in the 

neighborhood set Di of Ni vectors Ci= (ci,1, ci,2,…..,ci,v)  

ci,l =  Sl /sum (Sl),    for: l =1,2,…,v,                                                                       (28) 

where : Sl = abs (Ml (class 1) – Ml (class 2) ) / ( Stdl (class 1) + Stdl (class2)  )     (29) 

 

Here Ml (class 1) and Stdl (class 1) are respectively the mean value and the standard deviation of 

variable xl for all vectors in Di that belong to class 1.  

     The new distance measure, that weighs all variables according to their importance as 

discriminating factors in the neighborhood area Di, is the new element in the WWKNN algorithm 

when compared to the WKNN.          
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    Using the WWKNN algorithm, a “personalized” profile of the variable importance can be 

derived for any new input vector that represents a new piece of “personalised’ knowledge.  

Weighting variables in personalized models is used in the TWNFI models (Transductive Weighted 

Neuro-Fuzzy Inference) in [22].  

     There are several open problems related to transductive learning and reasoning, e.g. how to 

choose the optimal number of vectors in a neighbourhood and the optimal number of variables, 

which for different new vectors may be different [23].  

 

1.7.3. Model Validation 

 

When a machine learning model is built based on a data set S, it needs to be validated in terms of its 

generalisation ability to produce good results on new, unseen data samples. There are several ways 

to validate a model: 

- Train-test split of data: Splitting the data set S into two sets: Str for training, and Sts for 

testing the model; 

- N-fold cross validation (e.g. 3,5,10): in this case the data set S is split randomly into k sub-

sets S1,S2, …,Sk and i=1,2,…k  times a model Mi is created on a the data set S-Si and 

tested on the set Si; the mean accuracy across all k experiments is calculated.  

- Leave-one-out cross validation (a partial case of the above method when the data set S is 

split N times, in each sub-set there is only one sample) 

What concerns the whole task of feature selection, model creation and model validation, the above 

methods can be applied in two different ways: 

- A “biased” way – features are selected from the whole set S using a filtering based method, 

and then a model is created and validated on the selected already features. 

- An “un-biased” way – for every data subset Si in a cross validation procedure, first - 

features Fi are selected from the set S after set Si is removed from S (using some of the 

above discussed methods, e.g. SNR) and then – a model is created based on the feature set 

Fi; the model Mi is validated on Si using features Fi.  

 

1.8. Brain-Inspired AI  

 

Artificial Intelligence (AI) is part of the interdisciplinary information sciences area that develops 

and implements methods and systems that manifest cognitive behaviour [24-32].  

    Main features of AI are:  

- learning,  

- adaptation,  



- generalisation,  

- inductive and deductive reasoning,  

- human-like communication.  

    Some more features are currently being developed:  

- consciousness,  

- self-assembly,  

- self-reproduction,  

- AI social networks.  

     Marvin Minsky (1961) articulated the term Artificial Intelligence as computer systems that are 

able to perform: search, pattern recognition, learning, planning, inductive reasoning [26].       

     In [41] AI is defined as computer systems that exhibit human like intelligence. It is a group of 

science fields and technologies concerned with creating machines that take intelligent actions based 

on inputs. And also in [41] AI is defined as “...advanced digital technologies that enable machines 

to reproduce or surpass abilities that would require intelligence if humans were to perform them. 

This includes technologies that enable machines to learn and adapt, to sense and interact, to reason 

and plan, to optimise procedures and parameters, to operate autonomously, to be creative and to 

extract knowledge from large amounts of data....”   

     There is a trend in AI called Artificial General Intelligence (AGI) that considers machines to 

become able to perform any intellectual task that humans can do.   

    Another trend in AI is called Technological Singularity. This trend argues that machines will 

become super intelligent that they take over from humans and develop on their own, beyond which 

point the human societies can collapse in their present forms, which may ultimately lead to the 

perish of humanity.    

Stephen Hawking commented: “I believe there is no real difference between what can be 

achieved by a biological brain and what can be achieved by a computer. AI will be able to redesign 

itself at an ever-increasing rate. Humans, who are limited by slow biological evolution, couldn't 

compete and could be superseded by AI. AI could be either the best or the worst thing ever to 

happen to humanity…”  

     A new trend in AI is the Brain-Inspired AI (BI-AI), which is being developed and presented in 

this book. BI-AI systems use principles of deep learning in the human brain to reveal deep 

knowledge and to enable machines to manifest cognitive functions. BI-AI systems adopt structures 

and methods from the human brain to intelligently learn spatio-temporal data.  

     BI-AI systems have six distinctive features: 

(1) They have their structures and functionality inspired by the human brain; they consist of spatially 

located neurons that create connections between them through deep learning in time-space by 



exchanging information – spikes. They are built of spiking neural networks (SNN), as explained 

in Chapters 4-6 in the book.   

(2)  Being brain-inspired, BI-AI systems can achieve not only deep learning, but deep knowledge 

representation as well. 

(3)  They can manifest cognitive behaviour. 

(4)  They can be used for knowledge transfer between humans and machines as a foundation for the 

creation of symbiosis between humans and machines, ultimately leading to the integration of 

human intelligence and artificial intelligence (HI+AI) as discussed in the last chapter of the 

book.       

(5)  BI-AI systems are universal data learning machines, being superior than traditional machine 

learning techniques when dealing with time-space data.  

(6)  BI-AI systems can help us understand-, protect-, and cure the human brain.     

   

Box 1 elaborates further on the main features above and lists 20 features of BI-AI as presented and 

demonstrated in various chapters of the book. Some of them are in a preliminary stage of 

development and more can be expected in the future.  

 

______________________________________________________________________________ 

Box 1. Twenty structural, functional and cognitive features of BI-AI systems 

_____________________________________________________________________________________ 

     Structural Features: 

1. The structure and organisation of a system follows the structure and organisation of the human 

brain through using a 3D brain template. 

2. Input data and information is encoded and processed in the system as spikes over time.  

3. A system is built of spiking neurons and connections, forming SNN.    

4. A system is scalable, from hundreds to billions of neurons and trillions of connections.    

5. Inputs are mapped spatially into the 3D system structure.    

6. Output information is also presented as spike sequences. 

       Functional Features 

7. A system operates in a highly parallel mode, potentially all neurons operating in parallel.    

8. A system can be implemented on various computer platforms, but more efficiently on 

neuromorphic highly parallel platforms and on quantum computers (if available). 

9. Self-organised unsupervised, supervised and semi-supervised deep learning is performed using 

brain-inspired spike-time learning rules.    

10. The learned spatio-temporal patterns represent deep knowledge.   

11. A system operates in a fast, incremental and predictive learning mode. 



12. Different time scales of operation, e.g. nanoseconds, milliseconds, minutes, hours, days, 

millions of years (e.g. genetics), possibly in their integration.  

13. A system can process multimodal data from all levels per Fig.1 (e.g. quantum; genetic; 

neuronal; ensembles of neurons; etc.), possibly in their integration.  

      Cognitive features 

14. A system can communicate with humans in a natural language. 

15. A system can make abstractions and discover new knowledge (e.g. rules) through self-

observing its structure and functions. 

16. A system can process all kinds of sensory information that is processed by the human brain, 

including:  visual-, auditory-, sensory-, olfactory-, gustatory, if necessary in their integration.  

17. A system can manifest both sub-conscious and conscious processing of stimuli. 

18. A system can recognise and express emotions and consciousness. 

19. Deep knowledge can be transferred between humans and machines using brain signals and 

other  relevant information, e.g. visual, etc.   

20. BI-AI systems can form societies and communicate between each other and with humans 

achieving a constructive symbiosis between humans and machines.   

_____________________________________________________________________________ 

 

We will argue and will demonstrate in this book that BI-AI systems, if properly developed and 

used, can bring a tremendous technological progress across all areas of human activities and 

sciences and technologies, such as:  

– Early disease diagnosis and disease prevention (Chapter 18); 

– Affective robots for homes and for elderly (Chapters 8,14);  

– Improved decision support and productivity (Chapter 20); 

– Improved human intelligence and creativity (Chapters 12,13, 22); 

– Improved lives and longevity (Chapter 17, 18);  

– Predicting and preventing hazardous events (Chapter 19); 

– And many more.   

 

Some of the above applications are developed and illustrated in the book.   

 

1.9.  Chapter summary and further readings for deeper knowledge   

 

This chapter discusses fundamentals of evolving processes in space and time and some of the 

challenges to model them and to acquire deep knowledge. All methods and concepts presented in 



this chapter are used in different chapters of the book as a fundamental information.  More about 

this topic can be found in [12, 13].  

     With the large scale data collection across all science, technology and social areas, machine 

learning from data to create models and extract rules and knowledge became a necessity. This led to 

the establishment of artificial neural networks as major machine learning techniques that borrows 

some basic principle of information processing and learning from the brain (Chapter 2).  

     But, the human brain learns data in a deep learning mode and understands the evolving 

processes through the acquired deep knowledge (Chapter 3). How this could be used to create brain-

inspired SNN systems is discussed in Chapters 4-7 and how SNN can be used to create BI-AI 

application systems is presented in Chapters 8-19. Chapters 20, 21 and 22 present some new 

directions of research in SNN and BI-AI.  

      Further recommended readings on specific topics can include:  

-  Aristoteles’ epistemology [14, 15]; 

-  Fuzzy logic [16, 17]; 

- Hidden Markov Models [18]; 

- Statistical Learning Theory [19,20]; 

- Neuro-fuzzy systems [4].   
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